Cargando…

Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis

Plant root symbiosis with Arbuscular mycorrhizal (AM) fungi improves uptake of water and mineral nutrients, improving plant development under stressful conditions. Unraveling the unified transcriptomic signature of a successful colonization provides a better understanding of symbiosis. We developed...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohammadi-Dehcheshmeh, Manijeh, Niazi, Ali, Ebrahimi, Mansour, Tahsili, Mohammadreza, Nurollah, Zahra, Ebrahimi Khaksefid, Reyhaneh, Ebrahimi, Mahdi, Ebrahimie, Esmaeil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240842/
https://www.ncbi.nlm.nih.gov/pubmed/30483277
http://dx.doi.org/10.3389/fpls.2018.01550
_version_ 1783371702208561152
author Mohammadi-Dehcheshmeh, Manijeh
Niazi, Ali
Ebrahimi, Mansour
Tahsili, Mohammadreza
Nurollah, Zahra
Ebrahimi Khaksefid, Reyhaneh
Ebrahimi, Mahdi
Ebrahimie, Esmaeil
author_facet Mohammadi-Dehcheshmeh, Manijeh
Niazi, Ali
Ebrahimi, Mansour
Tahsili, Mohammadreza
Nurollah, Zahra
Ebrahimi Khaksefid, Reyhaneh
Ebrahimi, Mahdi
Ebrahimie, Esmaeil
author_sort Mohammadi-Dehcheshmeh, Manijeh
collection PubMed
description Plant root symbiosis with Arbuscular mycorrhizal (AM) fungi improves uptake of water and mineral nutrients, improving plant development under stressful conditions. Unraveling the unified transcriptomic signature of a successful colonization provides a better understanding of symbiosis. We developed a framework for finding the transcriptomic signature of Arbuscular mycorrhiza colonization and its regulating transcription factors in roots of Medicago truncatula. Expression profiles of roots in response to AM species were collected from four separate studies and were combined by direct merging meta-analysis. Batch effect, the major concern in expression meta-analysis, was reduced by three normalization steps: Robust Multi-array Average algorithm, Z-standardization, and quartiling normalization. Then, expression profile of 33685 genes in 18 root samples of Medicago as numerical features, as well as study ID and Arbuscular mycorrhiza type as categorical features, were mined by seven models: RELIEF, UNCERTAINTY, GINI INDEX, Chi Squared, RULE, INFO GAIN, and INFO GAIN RATIO. In total, 73 genes selected by machine learning models were up-regulated in response to AM (Z-value difference > 0.5). Feature weighting models also documented that this signature is independent from study (batch) effect. The AM inoculation signature obtained was able to differentiate efficiently between AM inoculated and non-inoculated samples. The AP2 domain class transcription factor, GRAS family transcription factors, and cyclin-dependent kinase were among the highly expressed meta-genes identified in the signature. We found high correspondence between the AM colonization signature obtained in this study and independent RNA-seq experiments on AM colonization, validating the repeatability of the colonization signature. Promoter analysis of upregulated genes in the transcriptomic signature led to the key regulators of AM colonization, including the essential transcription factors for endosymbiosis establishment and development such as NF-YA factors. The approach developed in this study offers three distinct novel features: (I) it improves direct merging meta-analysis by integrating supervised machine learning models and normalization steps to reduce study-specific batch effects; (II) seven attribute weighting models assessed the suitability of each gene for the transcriptomic signature which contributes to robustness of the signature (III) the approach is justifiable, easy to apply, and useful in practice. Our integrative framework of meta-analysis, promoter analysis, and machine learning provides a foundation to reveal the transcriptomic signature and regulatory circuits governing Arbuscular mycorrhizal symbiosis and is transferable to the other biological settings.
format Online
Article
Text
id pubmed-6240842
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-62408422018-11-27 Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis Mohammadi-Dehcheshmeh, Manijeh Niazi, Ali Ebrahimi, Mansour Tahsili, Mohammadreza Nurollah, Zahra Ebrahimi Khaksefid, Reyhaneh Ebrahimi, Mahdi Ebrahimie, Esmaeil Front Plant Sci Plant Science Plant root symbiosis with Arbuscular mycorrhizal (AM) fungi improves uptake of water and mineral nutrients, improving plant development under stressful conditions. Unraveling the unified transcriptomic signature of a successful colonization provides a better understanding of symbiosis. We developed a framework for finding the transcriptomic signature of Arbuscular mycorrhiza colonization and its regulating transcription factors in roots of Medicago truncatula. Expression profiles of roots in response to AM species were collected from four separate studies and were combined by direct merging meta-analysis. Batch effect, the major concern in expression meta-analysis, was reduced by three normalization steps: Robust Multi-array Average algorithm, Z-standardization, and quartiling normalization. Then, expression profile of 33685 genes in 18 root samples of Medicago as numerical features, as well as study ID and Arbuscular mycorrhiza type as categorical features, were mined by seven models: RELIEF, UNCERTAINTY, GINI INDEX, Chi Squared, RULE, INFO GAIN, and INFO GAIN RATIO. In total, 73 genes selected by machine learning models were up-regulated in response to AM (Z-value difference > 0.5). Feature weighting models also documented that this signature is independent from study (batch) effect. The AM inoculation signature obtained was able to differentiate efficiently between AM inoculated and non-inoculated samples. The AP2 domain class transcription factor, GRAS family transcription factors, and cyclin-dependent kinase were among the highly expressed meta-genes identified in the signature. We found high correspondence between the AM colonization signature obtained in this study and independent RNA-seq experiments on AM colonization, validating the repeatability of the colonization signature. Promoter analysis of upregulated genes in the transcriptomic signature led to the key regulators of AM colonization, including the essential transcription factors for endosymbiosis establishment and development such as NF-YA factors. The approach developed in this study offers three distinct novel features: (I) it improves direct merging meta-analysis by integrating supervised machine learning models and normalization steps to reduce study-specific batch effects; (II) seven attribute weighting models assessed the suitability of each gene for the transcriptomic signature which contributes to robustness of the signature (III) the approach is justifiable, easy to apply, and useful in practice. Our integrative framework of meta-analysis, promoter analysis, and machine learning provides a foundation to reveal the transcriptomic signature and regulatory circuits governing Arbuscular mycorrhizal symbiosis and is transferable to the other biological settings. Frontiers Media S.A. 2018-11-12 /pmc/articles/PMC6240842/ /pubmed/30483277 http://dx.doi.org/10.3389/fpls.2018.01550 Text en Copyright © 2018 Mohammadi-Dehcheshmeh, Niazi, Ebrahimi, Tahsili, Nurollah, Ebrahimi Khaksefid, Ebrahimi and Ebrahimie. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Mohammadi-Dehcheshmeh, Manijeh
Niazi, Ali
Ebrahimi, Mansour
Tahsili, Mohammadreza
Nurollah, Zahra
Ebrahimi Khaksefid, Reyhaneh
Ebrahimi, Mahdi
Ebrahimie, Esmaeil
Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis
title Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis
title_full Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis
title_fullStr Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis
title_full_unstemmed Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis
title_short Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis
title_sort unified transcriptomic signature of arbuscular mycorrhiza colonization in roots of medicago truncatula by integration of machine learning, promoter analysis, and direct merging meta-analysis
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240842/
https://www.ncbi.nlm.nih.gov/pubmed/30483277
http://dx.doi.org/10.3389/fpls.2018.01550
work_keys_str_mv AT mohammadidehcheshmehmanijeh unifiedtranscriptomicsignatureofarbuscularmycorrhizacolonizationinrootsofmedicagotruncatulabyintegrationofmachinelearningpromoteranalysisanddirectmergingmetaanalysis
AT niaziali unifiedtranscriptomicsignatureofarbuscularmycorrhizacolonizationinrootsofmedicagotruncatulabyintegrationofmachinelearningpromoteranalysisanddirectmergingmetaanalysis
AT ebrahimimansour unifiedtranscriptomicsignatureofarbuscularmycorrhizacolonizationinrootsofmedicagotruncatulabyintegrationofmachinelearningpromoteranalysisanddirectmergingmetaanalysis
AT tahsilimohammadreza unifiedtranscriptomicsignatureofarbuscularmycorrhizacolonizationinrootsofmedicagotruncatulabyintegrationofmachinelearningpromoteranalysisanddirectmergingmetaanalysis
AT nurollahzahra unifiedtranscriptomicsignatureofarbuscularmycorrhizacolonizationinrootsofmedicagotruncatulabyintegrationofmachinelearningpromoteranalysisanddirectmergingmetaanalysis
AT ebrahimikhaksefidreyhaneh unifiedtranscriptomicsignatureofarbuscularmycorrhizacolonizationinrootsofmedicagotruncatulabyintegrationofmachinelearningpromoteranalysisanddirectmergingmetaanalysis
AT ebrahimimahdi unifiedtranscriptomicsignatureofarbuscularmycorrhizacolonizationinrootsofmedicagotruncatulabyintegrationofmachinelearningpromoteranalysisanddirectmergingmetaanalysis
AT ebrahimieesmaeil unifiedtranscriptomicsignatureofarbuscularmycorrhizacolonizationinrootsofmedicagotruncatulabyintegrationofmachinelearningpromoteranalysisanddirectmergingmetaanalysis