Cargando…

The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(ii) complexes

Understanding and controlling properties of transition metal complexes is a crucial step towards tailoring materials for sustainable energy applications. In a systematic approach, we use resonant inelastic X-ray scattering to study the influence of ligand substitution on the valence electronic struc...

Descripción completa

Detalles Bibliográficos
Autores principales: Jay, Raphael M., Eckert, Sebastian, Fondell, Mattis, Miedema, Piter S., Norell, Jesper, Pietzsch, Annette, Quevedo, Wilson, Niskanen, Johannes, Kunnus, Kristjan, Föhlisch, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240897/
https://www.ncbi.nlm.nih.gov/pubmed/30211412
http://dx.doi.org/10.1039/c8cp04341h
_version_ 1783371708053323776
author Jay, Raphael M.
Eckert, Sebastian
Fondell, Mattis
Miedema, Piter S.
Norell, Jesper
Pietzsch, Annette
Quevedo, Wilson
Niskanen, Johannes
Kunnus, Kristjan
Föhlisch, Alexander
author_facet Jay, Raphael M.
Eckert, Sebastian
Fondell, Mattis
Miedema, Piter S.
Norell, Jesper
Pietzsch, Annette
Quevedo, Wilson
Niskanen, Johannes
Kunnus, Kristjan
Föhlisch, Alexander
author_sort Jay, Raphael M.
collection PubMed
description Understanding and controlling properties of transition metal complexes is a crucial step towards tailoring materials for sustainable energy applications. In a systematic approach, we use resonant inelastic X-ray scattering to study the influence of ligand substitution on the valence electronic structure around an aqueous iron(ii) center. Exchanging cyanide with 2-2′-bipyridine ligands reshapes frontier orbitals in a way that reduces metal 3d charge delocalization onto the ligands. This net decrease of metal–ligand covalency results in lower metal-centered excited state energies in agreement with previously reported excited state dynamics. Furthermore, traces of solvent-effects were found indicating a varying interaction strength of the solvent with ligands of different character. Our results demonstrate how ligand exchange can be exploited to shape frontier orbitals of transition metal complexes in solution-phase chemistry; insights upon which future efforts can built when tailoring the functionality of photoactive systems for light-harvesting applications.
format Online
Article
Text
id pubmed-6240897
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-62408972018-12-12 The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(ii) complexes Jay, Raphael M. Eckert, Sebastian Fondell, Mattis Miedema, Piter S. Norell, Jesper Pietzsch, Annette Quevedo, Wilson Niskanen, Johannes Kunnus, Kristjan Föhlisch, Alexander Phys Chem Chem Phys Chemistry Understanding and controlling properties of transition metal complexes is a crucial step towards tailoring materials for sustainable energy applications. In a systematic approach, we use resonant inelastic X-ray scattering to study the influence of ligand substitution on the valence electronic structure around an aqueous iron(ii) center. Exchanging cyanide with 2-2′-bipyridine ligands reshapes frontier orbitals in a way that reduces metal 3d charge delocalization onto the ligands. This net decrease of metal–ligand covalency results in lower metal-centered excited state energies in agreement with previously reported excited state dynamics. Furthermore, traces of solvent-effects were found indicating a varying interaction strength of the solvent with ligands of different character. Our results demonstrate how ligand exchange can be exploited to shape frontier orbitals of transition metal complexes in solution-phase chemistry; insights upon which future efforts can built when tailoring the functionality of photoactive systems for light-harvesting applications. Royal Society of Chemistry 2018-11-28 2018-09-13 /pmc/articles/PMC6240897/ /pubmed/30211412 http://dx.doi.org/10.1039/c8cp04341h Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Jay, Raphael M.
Eckert, Sebastian
Fondell, Mattis
Miedema, Piter S.
Norell, Jesper
Pietzsch, Annette
Quevedo, Wilson
Niskanen, Johannes
Kunnus, Kristjan
Föhlisch, Alexander
The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(ii) complexes
title The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(ii) complexes
title_full The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(ii) complexes
title_fullStr The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(ii) complexes
title_full_unstemmed The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(ii) complexes
title_short The nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral Fe(ii) complexes
title_sort nature of frontier orbitals under systematic ligand exchange in (pseudo-)octahedral fe(ii) complexes
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240897/
https://www.ncbi.nlm.nih.gov/pubmed/30211412
http://dx.doi.org/10.1039/c8cp04341h
work_keys_str_mv AT jayraphaelm thenatureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT eckertsebastian thenatureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT fondellmattis thenatureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT miedemapiters thenatureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT norelljesper thenatureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT pietzschannette thenatureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT quevedowilson thenatureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT niskanenjohannes thenatureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT kunnuskristjan thenatureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT fohlischalexander thenatureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT jayraphaelm natureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT eckertsebastian natureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT fondellmattis natureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT miedemapiters natureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT norelljesper natureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT pietzschannette natureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT quevedowilson natureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT niskanenjohannes natureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT kunnuskristjan natureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes
AT fohlischalexander natureoffrontierorbitalsundersystematicligandexchangeinpseudooctahedralfeiicomplexes