Cargando…
Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere
Streptomyces species 1–14 isolated from cassava rhizosphere soil were evaluated for their antibacterial efficacy against Fusarium oxysporum f.sp. cubense race 4 (FOC4). Of the 63 strains tested, thirteen exhibited potent antibacterial properties and were further screened against eight fungal pathoge...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6241123/ https://www.ncbi.nlm.nih.gov/pubmed/30427885 http://dx.doi.org/10.1371/journal.pone.0206497 |
_version_ | 1783371738493485056 |
---|---|
author | Yun, Tian Yan Feng, Ren Jun Zhou, Deng Bo Pan, Yue Yun Chen, Yu Feng Wang, Fei Yin, Li Yan Zhang, Yin Dong Xie, Jiang Hui |
author_facet | Yun, Tian Yan Feng, Ren Jun Zhou, Deng Bo Pan, Yue Yun Chen, Yu Feng Wang, Fei Yin, Li Yan Zhang, Yin Dong Xie, Jiang Hui |
author_sort | Yun, Tian Yan |
collection | PubMed |
description | Streptomyces species 1–14 isolated from cassava rhizosphere soil were evaluated for their antibacterial efficacy against Fusarium oxysporum f.sp. cubense race 4 (FOC4). Of the 63 strains tested, thirteen exhibited potent antibacterial properties and were further screened against eight fungal pathogens. The strain that showed maximum inhibition against all of the test pathogens was identified by 16S rDNA sequencing as Streptomyces sp. 1–14, was selected for further studies. Through the propagation of Streptomyces sp. 1–14 in soil under simulated conditions, we found that FOC4 did not significantly influence the multiplication and survival of Streptomyces sp. 1–14, while indigenous microorganisms in the soil did significantly influence Streptomyces sp. 1–14 populations. To achieve maximum metabolite production, the growth of Streptomyces 1–14 was optimized through response surface methodology employing Plackett-Burman design, path of steepest ascent determinations and Box-Behnken design. The final optimized fermentation conditions (g/L) included: glucose, 38.877; CaCl(2)•2H(2)O, 0.161; temperature, 29.97°C; and inoculation amount, 8.93%. This optimization resulted in an antibacterial activity of 56.13% against FOC4, which was 12.33% higher than that before optimization (43.80%). The results obtained using response surface methodology to optimize the fermentation medium had a significant effect on the production of bioactive metabolites by Streptomyces sp. 1–14. Moreover, during fermentation and storage, pH, light, storage temperature, etc., must be closely monitored to reduce the formation of fermentation products with reduced antibacterial activity. This method is useful for further investigations of the production of anti-FOC4 substances, and could be used to develop bio-control agents to suppress or control banana fusarium wilt. |
format | Online Article Text |
id | pubmed-6241123 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62411232018-12-01 Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere Yun, Tian Yan Feng, Ren Jun Zhou, Deng Bo Pan, Yue Yun Chen, Yu Feng Wang, Fei Yin, Li Yan Zhang, Yin Dong Xie, Jiang Hui PLoS One Research Article Streptomyces species 1–14 isolated from cassava rhizosphere soil were evaluated for their antibacterial efficacy against Fusarium oxysporum f.sp. cubense race 4 (FOC4). Of the 63 strains tested, thirteen exhibited potent antibacterial properties and were further screened against eight fungal pathogens. The strain that showed maximum inhibition against all of the test pathogens was identified by 16S rDNA sequencing as Streptomyces sp. 1–14, was selected for further studies. Through the propagation of Streptomyces sp. 1–14 in soil under simulated conditions, we found that FOC4 did not significantly influence the multiplication and survival of Streptomyces sp. 1–14, while indigenous microorganisms in the soil did significantly influence Streptomyces sp. 1–14 populations. To achieve maximum metabolite production, the growth of Streptomyces 1–14 was optimized through response surface methodology employing Plackett-Burman design, path of steepest ascent determinations and Box-Behnken design. The final optimized fermentation conditions (g/L) included: glucose, 38.877; CaCl(2)•2H(2)O, 0.161; temperature, 29.97°C; and inoculation amount, 8.93%. This optimization resulted in an antibacterial activity of 56.13% against FOC4, which was 12.33% higher than that before optimization (43.80%). The results obtained using response surface methodology to optimize the fermentation medium had a significant effect on the production of bioactive metabolites by Streptomyces sp. 1–14. Moreover, during fermentation and storage, pH, light, storage temperature, etc., must be closely monitored to reduce the formation of fermentation products with reduced antibacterial activity. This method is useful for further investigations of the production of anti-FOC4 substances, and could be used to develop bio-control agents to suppress or control banana fusarium wilt. Public Library of Science 2018-11-14 /pmc/articles/PMC6241123/ /pubmed/30427885 http://dx.doi.org/10.1371/journal.pone.0206497 Text en © 2018 Yun et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yun, Tian Yan Feng, Ren Jun Zhou, Deng Bo Pan, Yue Yun Chen, Yu Feng Wang, Fei Yin, Li Yan Zhang, Yin Dong Xie, Jiang Hui Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere |
title | Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere |
title_full | Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere |
title_fullStr | Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere |
title_full_unstemmed | Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere |
title_short | Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere |
title_sort | optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by streptomyces sp. 1-14 from cassava rhizosphere |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6241123/ https://www.ncbi.nlm.nih.gov/pubmed/30427885 http://dx.doi.org/10.1371/journal.pone.0206497 |
work_keys_str_mv | AT yuntianyan optimizationoffermentationconditionsthroughresponsesurfacemethodologyforenhancedantibacterialmetaboliteproductionbystreptomycessp114fromcassavarhizosphere AT fengrenjun optimizationoffermentationconditionsthroughresponsesurfacemethodologyforenhancedantibacterialmetaboliteproductionbystreptomycessp114fromcassavarhizosphere AT zhoudengbo optimizationoffermentationconditionsthroughresponsesurfacemethodologyforenhancedantibacterialmetaboliteproductionbystreptomycessp114fromcassavarhizosphere AT panyueyun optimizationoffermentationconditionsthroughresponsesurfacemethodologyforenhancedantibacterialmetaboliteproductionbystreptomycessp114fromcassavarhizosphere AT chenyufeng optimizationoffermentationconditionsthroughresponsesurfacemethodologyforenhancedantibacterialmetaboliteproductionbystreptomycessp114fromcassavarhizosphere AT wangfei optimizationoffermentationconditionsthroughresponsesurfacemethodologyforenhancedantibacterialmetaboliteproductionbystreptomycessp114fromcassavarhizosphere AT yinliyan optimizationoffermentationconditionsthroughresponsesurfacemethodologyforenhancedantibacterialmetaboliteproductionbystreptomycessp114fromcassavarhizosphere AT zhangyindong optimizationoffermentationconditionsthroughresponsesurfacemethodologyforenhancedantibacterialmetaboliteproductionbystreptomycessp114fromcassavarhizosphere AT xiejianghui optimizationoffermentationconditionsthroughresponsesurfacemethodologyforenhancedantibacterialmetaboliteproductionbystreptomycessp114fromcassavarhizosphere |