Cargando…
Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data
Several neuroimaging studies have shown that listening to music activates brain regions that reside in the motor system, even when there is no overt movement. However, many of these studies report the activation of varying motor system areas that include the primary motor cortex, supplementary motor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242316/ https://www.ncbi.nlm.nih.gov/pubmed/30452442 http://dx.doi.org/10.1371/journal.pone.0207213 |
_version_ | 1783371816498102272 |
---|---|
author | Gordon, Chelsea L. Cobb, Patrice R. Balasubramaniam, Ramesh |
author_facet | Gordon, Chelsea L. Cobb, Patrice R. Balasubramaniam, Ramesh |
author_sort | Gordon, Chelsea L. |
collection | PubMed |
description | Several neuroimaging studies have shown that listening to music activates brain regions that reside in the motor system, even when there is no overt movement. However, many of these studies report the activation of varying motor system areas that include the primary motor cortex, supplementary motor area, dorsal and ventral pre-motor areas and parietal regions. In order to examine what specific roles are played by various motor regions during music perception, we used activation likelihood estimation (ALE) to conduct a meta-analysis of neuroimaging literature on passive music listening. After extensive search of the literature, 42 studies were analyzed resulting in a total of 386 unique subjects contributing 694 activation foci in total. As suspected, auditory activations were found in the bilateral superior temporal gyrus, transverse temporal gyrus, insula, pyramis, bilateral precentral gyrus, and bilateral medial frontal gyrus. We also saw the widespread activation of motor networks including left and right lateral premotor cortex, right primary motor cortex, and the left cerebellum. These results suggest a central role of the motor system in music and rhythm perception. We discuss these findings in the context of the Action Simulation for Auditory Prediction (ASAP) model and other predictive coding accounts of brain function. |
format | Online Article Text |
id | pubmed-6242316 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62423162018-12-01 Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data Gordon, Chelsea L. Cobb, Patrice R. Balasubramaniam, Ramesh PLoS One Research Article Several neuroimaging studies have shown that listening to music activates brain regions that reside in the motor system, even when there is no overt movement. However, many of these studies report the activation of varying motor system areas that include the primary motor cortex, supplementary motor area, dorsal and ventral pre-motor areas and parietal regions. In order to examine what specific roles are played by various motor regions during music perception, we used activation likelihood estimation (ALE) to conduct a meta-analysis of neuroimaging literature on passive music listening. After extensive search of the literature, 42 studies were analyzed resulting in a total of 386 unique subjects contributing 694 activation foci in total. As suspected, auditory activations were found in the bilateral superior temporal gyrus, transverse temporal gyrus, insula, pyramis, bilateral precentral gyrus, and bilateral medial frontal gyrus. We also saw the widespread activation of motor networks including left and right lateral premotor cortex, right primary motor cortex, and the left cerebellum. These results suggest a central role of the motor system in music and rhythm perception. We discuss these findings in the context of the Action Simulation for Auditory Prediction (ASAP) model and other predictive coding accounts of brain function. Public Library of Science 2018-11-19 /pmc/articles/PMC6242316/ /pubmed/30452442 http://dx.doi.org/10.1371/journal.pone.0207213 Text en © 2018 Gordon et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Gordon, Chelsea L. Cobb, Patrice R. Balasubramaniam, Ramesh Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data |
title | Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data |
title_full | Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data |
title_fullStr | Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data |
title_full_unstemmed | Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data |
title_short | Recruitment of the motor system during music listening: An ALE meta-analysis of fMRI data |
title_sort | recruitment of the motor system during music listening: an ale meta-analysis of fmri data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242316/ https://www.ncbi.nlm.nih.gov/pubmed/30452442 http://dx.doi.org/10.1371/journal.pone.0207213 |
work_keys_str_mv | AT gordonchelseal recruitmentofthemotorsystemduringmusiclisteninganalemetaanalysisoffmridata AT cobbpatricer recruitmentofthemotorsystemduringmusiclisteninganalemetaanalysisoffmridata AT balasubramaniamramesh recruitmentofthemotorsystemduringmusiclisteninganalemetaanalysisoffmridata |