Cargando…

Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space

The exchange of metabolites between the mitochondrial matrix and the cytosol depends on β-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space...

Descripción completa

Detalles Bibliográficos
Autores principales: Weinhäupl, Katharina, Lindau, Caroline, Hessel, Audrey, Wang, Yong, Schütze, Conny, Jores, Tobias, Melchionda, Laura, Schönfisch, Birgit, Kalbacher, Hubert, Bersch, Beate, Rapaport, Doron, Brennich, Martha, Lindorff-Larsen, Kresten, Wiedemann, Nils, Schanda, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242696/
https://www.ncbi.nlm.nih.gov/pubmed/30445040
http://dx.doi.org/10.1016/j.cell.2018.10.039
_version_ 1783371831864983552
author Weinhäupl, Katharina
Lindau, Caroline
Hessel, Audrey
Wang, Yong
Schütze, Conny
Jores, Tobias
Melchionda, Laura
Schönfisch, Birgit
Kalbacher, Hubert
Bersch, Beate
Rapaport, Doron
Brennich, Martha
Lindorff-Larsen, Kresten
Wiedemann, Nils
Schanda, Paul
author_facet Weinhäupl, Katharina
Lindau, Caroline
Hessel, Audrey
Wang, Yong
Schütze, Conny
Jores, Tobias
Melchionda, Laura
Schönfisch, Birgit
Kalbacher, Hubert
Bersch, Beate
Rapaport, Doron
Brennich, Martha
Lindorff-Larsen, Kresten
Wiedemann, Nils
Schanda, Paul
author_sort Weinhäupl, Katharina
collection PubMed
description The exchange of metabolites between the mitochondrial matrix and the cytosol depends on β-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and β-barrel protein biogenesis. Our work reveals how a single mitochondrial “transfer-chaperone” system is able to guide α-helical and β-barrel membrane proteins in a “nascent chain-like” conformation through a ribosome-free compartment.
format Online
Article
Text
id pubmed-6242696
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-62426962018-11-21 Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space Weinhäupl, Katharina Lindau, Caroline Hessel, Audrey Wang, Yong Schütze, Conny Jores, Tobias Melchionda, Laura Schönfisch, Birgit Kalbacher, Hubert Bersch, Beate Rapaport, Doron Brennich, Martha Lindorff-Larsen, Kresten Wiedemann, Nils Schanda, Paul Cell Article The exchange of metabolites between the mitochondrial matrix and the cytosol depends on β-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and β-barrel protein biogenesis. Our work reveals how a single mitochondrial “transfer-chaperone” system is able to guide α-helical and β-barrel membrane proteins in a “nascent chain-like” conformation through a ribosome-free compartment. Cell Press 2018-11-15 /pmc/articles/PMC6242696/ /pubmed/30445040 http://dx.doi.org/10.1016/j.cell.2018.10.039 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Weinhäupl, Katharina
Lindau, Caroline
Hessel, Audrey
Wang, Yong
Schütze, Conny
Jores, Tobias
Melchionda, Laura
Schönfisch, Birgit
Kalbacher, Hubert
Bersch, Beate
Rapaport, Doron
Brennich, Martha
Lindorff-Larsen, Kresten
Wiedemann, Nils
Schanda, Paul
Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space
title Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space
title_full Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space
title_fullStr Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space
title_full_unstemmed Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space
title_short Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space
title_sort structural basis of membrane protein chaperoning through the mitochondrial intermembrane space
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242696/
https://www.ncbi.nlm.nih.gov/pubmed/30445040
http://dx.doi.org/10.1016/j.cell.2018.10.039
work_keys_str_mv AT weinhauplkatharina structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT lindaucaroline structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT hesselaudrey structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT wangyong structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT schutzeconny structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT jorestobias structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT melchiondalaura structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT schonfischbirgit structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT kalbacherhubert structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT berschbeate structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT rapaportdoron structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT brennichmartha structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT lindorfflarsenkresten structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT wiedemannnils structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace
AT schandapaul structuralbasisofmembraneproteinchaperoningthroughthemitochondrialintermembranespace