Cargando…
Detection of correlated hidden factors from single cell transcriptomes using Iteratively Adjusted-SVA (IA-SVA)
Single cell RNA-sequencing (scRNA-seq) precisely characterizes gene expression levels and dissects variation in expression associated with the state (technical or biological) and the type of the cell, which is averaged out in bulk measurements. Multiple and correlated sources contribute to gene expr...
Autores principales: | Lee, Donghyung, Cheng, Anthony, Lawlor, Nathan, Bolisetty, Mohan, Ucar, Duygu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242813/ https://www.ncbi.nlm.nih.gov/pubmed/30451954 http://dx.doi.org/10.1038/s41598-018-35365-9 |
Ejemplares similares
-
V-SVA: an R Shiny application for detecting and annotating hidden sources of variation in single-cell RNA-seq data
por: Lawlor, Nathan, et al.
Publicado: (2020) -
Identification of polymorphic SVA retrotransposons using a mobile element scanning method for SVA (ME-Scan-SVA)
por: Ha, Hongseok, et al.
Publicado: (2016) -
The landscape of human SVA retrotransposons
por: Chu, Chong, et al.
Publicado: (2023) -
SVA: the power of assertions in SystemVerilog
por: Cerny, Eduard, et al.
Publicado: (2015) -
SVA retrotransposons as modulators of gene expression
por: Quinn, John P, et al.
Publicado: (2014)