Cargando…

Phosphorescent Energy Downshifting for Diminishing Surface Recombination in Silicon Nanowire Solar Cells

Molecularly engineered Ir(III) complexes can transfer energy from short-wavelength photons (λ < 450 nm) to photons of longer wavelength (λ > 500 nm), which can enhance the otherwise low internal quantum efficiency (IQE) of crystalline Si (c-Si) nanowire solar cells (NWSCs) in the short-wavelen...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyun-Tak, Lee, Kangmin, Jin, Wonjoo, Um, Han-Don, Lee, Minsoo, Hwang, Eunhye, Kwon, Tae-Hyuk, Seo, Kwanyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242905/
https://www.ncbi.nlm.nih.gov/pubmed/30451908
http://dx.doi.org/10.1038/s41598-018-35356-w
Descripción
Sumario:Molecularly engineered Ir(III) complexes can transfer energy from short-wavelength photons (λ < 450 nm) to photons of longer wavelength (λ > 500 nm), which can enhance the otherwise low internal quantum efficiency (IQE) of crystalline Si (c-Si) nanowire solar cells (NWSCs) in the short-wavelength region. Herein, we demonstrate a phosphorescent energy downshifting system using Ir(III) complexes at short wavelengths (300–450 nm) to diminish the severe surface recombination that occurs in c-Si NWSCs. The developed Ir(III) complexes can be considered promising energy converters because they exhibit superior intrinsic properties such as a high quantum yield, a large Stokes shift, a long exciton diffusion length in crystalline film, and a reproducible synthetic procedure. Using the developed Ir(III) complexes, highly crystalline energy downshifting layers were fabricated by ultrasonic spray deposition to enhance the photoluminescence efficiency by increasing the radiative decay. With the optimized energy downshifting layer, our 1 cm(2) c-Si NWSCs with Ir(III) complexes exhibited a higher IQE value for short-wavelength light (300–450 nm) compared with that of bare Si NWSCs without Ir(III) complexes, resulting in a notable increase in the short-circuit current density (from 34.4 mA·cm(−2) to 36.5 mA·cm(−2)).