Cargando…
Large-scale in-silico statistical mutagenesis analysis sheds light on the deleteriousness landscape of the human proteome
Next generation sequencing technologies are providing increasing amounts of sequencing data, paving the way for improvements in clinical genetics and precision medicine. The interpretation of the observed genomic variants in the light of their phenotypic effects is thus emerging as a crucial task to...
Autores principales: | Raimondi, Daniele, Orlando, Gabriele, Tabaro, Francesco, Lenaerts, Tom, Rooman, Marianne, Moreau, Yves, Vranken, Wim F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242909/ https://www.ncbi.nlm.nih.gov/pubmed/30451933 http://dx.doi.org/10.1038/s41598-018-34959-7 |
Ejemplares similares
-
DEOGEN2: prediction and interactive visualization of single amino acid variant deleteriousness in human proteins
por: Raimondi, Daniele, et al.
Publicado: (2017) -
MutaFrame—an interpretative visualization framework for deleteriousness prediction of missense variants in the human exome
por: Ancien, François, et al.
Publicado: (2021) -
Exploring the limitations of biophysical propensity scales coupled with machine learning for protein sequence analysis
por: Raimondi, Daniele, et al.
Publicado: (2019) -
An Evolutionary View on Disulfide Bond Connectivities Prediction Using Phylogenetic Trees and a Simple Cysteine Mutation Model
por: Raimondi, Daniele, et al.
Publicado: (2015) -
Auto-encoding NMR chemical shifts from their native vector space to a residue-level biophysical index
por: Orlando, Gabriele, et al.
Publicado: (2019)