Cargando…

Sequences encoding C2H2 zinc fingers inhibit polyadenylation and mRNA export in human cells

The large C2H2-Zinc Finger (C2H2-ZNF) gene family has rapidly expanded in primates through gene duplication. There is consequently considerable sequence homology between family members at both the nucleotide and amino acid level, allowing for coordinated regulation and shared functions. Here we show...

Descripción completa

Detalles Bibliográficos
Autores principales: Russo, Joseph, Jalkanen, Aimee L., Heck, Adam M., Schmidt, Caleb M., Wilusz, Jeffrey, Wilusz, Carol J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242934/
https://www.ncbi.nlm.nih.gov/pubmed/30451889
http://dx.doi.org/10.1038/s41598-018-35138-4
Descripción
Sumario:The large C2H2-Zinc Finger (C2H2-ZNF) gene family has rapidly expanded in primates through gene duplication. There is consequently considerable sequence homology between family members at both the nucleotide and amino acid level, allowing for coordinated regulation and shared functions. Here we show that multiple C2H2-ZNF mRNAs experience differential polyadenylation resulting in populations with short and long poly(A) tails. Furthermore, a significant proportion of C2H2-ZNF mRNAs are retained in the nucleus. Intriguingly, both short poly(A) tails and nuclear retention can be specified by the repeated elements that encode zinc finger motifs. These Zinc finger Coding Regions (ZCRs) appear to restrict polyadenylation of nascent RNAs and at the same time impede their export. However, the polyadenylation process is not necessary for nuclear retention of ZNF mRNAs. We propose that inefficient polyadenylation and export may allow C2H2-ZNF mRNAs to moonlight as non-coding RNAs or to be stored for later use.