Cargando…
Employing fingerprinting of medicinal plants by means of LC-MS and machine learning for species identification task
A dataset of liquid chromatography-mass spectrometry measurements of medicinal plant extracts from 74 species was generated and used for training and validating plant species identification algorithms. Various strategies for data handling and feature space extraction were tested. Constrained Tucker...
Autores principales: | Kharyuk, Pavel, Nazarenko, Dmitry, Oseledets, Ivan, Rodin, Igor, Shpigun, Oleg, Tsitsilin, Andrey, Lavrentyev, Mikhail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243014/ https://www.ncbi.nlm.nih.gov/pubmed/30451976 http://dx.doi.org/10.1038/s41598-018-35399-z |
Ejemplares similares
-
Author Correction: Employing fingerprinting of medicinal plants by means of LC-MS and machine learning for species identification task
por: Kharyuk, Pavel, et al.
Publicado: (2020) -
Multi-Task Neural Networks and Molecular Fingerprints to Enhance Compound Identification from LC-MS/MS Data
por: Consonni, Viviana, et al.
Publicado: (2022) -
LC-MS-Based Metabolic Fingerprinting of Aqueous Humor
por: Pietrowska, Karolina, et al.
Publicado: (2017) -
Analysis of Primary Liquid Chromatography Mass Spectrometry Data by Neural Networks for Plant Samples Classification
por: Turova, Polina, et al.
Publicado: (2022) -
Hopomics: Humulus lupulus Brewing Cultivars Classification Based on LC-MS Profiling and Nested Feature Selection
por: Ikhalaynen, Yuriy Andreevich, et al.
Publicado: (2022)