Cargando…
Comparative Efficacy of Diethylcarbamazine, Nitazoxanide and Nanocomposite of Nitazoxanide and Silver Nanoparticles on the Dehydrogenases of TCA Cycle in Setaria cervi, in Vitro
BACKGROUND: Bovine filariid, Setaria cervi may cause serious pathological condition such as cerebrospinal nematodiasis in sheep, goat and horses. Since TCA cycle enzymes have certain biological functions that make them essential for the survival of parasite and therefore, efficacy of diethylcarbamaz...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tehran University of Medical Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243168/ https://www.ncbi.nlm.nih.gov/pubmed/30483331 |
_version_ | 1783371927679664128 |
---|---|
author | KAUSAR, Sharba KHAN, Wajihullah |
author_facet | KAUSAR, Sharba KHAN, Wajihullah |
author_sort | KAUSAR, Sharba |
collection | PubMed |
description | BACKGROUND: Bovine filariid, Setaria cervi may cause serious pathological condition such as cerebrospinal nematodiasis in sheep, goat and horses. Since TCA cycle enzymes have certain biological functions that make them essential for the survival of parasite and therefore, efficacy of diethylcarbamazine (DEC), nitazoxanide (NTZ) and a nanocomposite of nitazoxanide and silver nanoparticles (NTZ+AgNPs) was assessed on succinate, malate and isocitrate dehydrogenases in the microfilariae (mf) and adult S. cervi worms. METHODS: This study was conducted in the Department of Zoology, Aligarh Muslim University, Aligarh, India during 2015–2016. Adult and microfilariae of S. cervi were incubated in 100 μg/ml of DEC, NTZ, and NTZ+AgNPs for 24 and 6 h, respectively at 37 °C. Succinate, malate and isocitrate dehydrogenases were localized by putting the mf and adult worms in the incubating medium containing their respective substrates at 37 °C for 2 h followed by counterstaining in 2% methylene green for 15 min. RESULTS: Maximum inhibition of TCA cycle enzymes was observed in both microfilariae and adult worms treated with nanocomposite of NTZ-AgNPs. Ruptured sheath along with nanoparticles sticking to the body surface was noticed in NTZ+AgNPs treated microfilariae. CONCLUSION: NTZ+AgNPs proved most effective synergistic combination against TCA cycle enzymes which blocked the isocitrate and malate dehydrogenase almost completely, and succinate dehydrogenase to large extent in both microfilariae as well as adult worms of S. cervi. AgNPs ruptured the sheath and allowed the NTZ to attach and penetrate the main body to exert maximum effect on the enzymes. |
format | Online Article Text |
id | pubmed-6243168 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Tehran University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-62431682018-11-27 Comparative Efficacy of Diethylcarbamazine, Nitazoxanide and Nanocomposite of Nitazoxanide and Silver Nanoparticles on the Dehydrogenases of TCA Cycle in Setaria cervi, in Vitro KAUSAR, Sharba KHAN, Wajihullah Iran J Parasitol Original Article BACKGROUND: Bovine filariid, Setaria cervi may cause serious pathological condition such as cerebrospinal nematodiasis in sheep, goat and horses. Since TCA cycle enzymes have certain biological functions that make them essential for the survival of parasite and therefore, efficacy of diethylcarbamazine (DEC), nitazoxanide (NTZ) and a nanocomposite of nitazoxanide and silver nanoparticles (NTZ+AgNPs) was assessed on succinate, malate and isocitrate dehydrogenases in the microfilariae (mf) and adult S. cervi worms. METHODS: This study was conducted in the Department of Zoology, Aligarh Muslim University, Aligarh, India during 2015–2016. Adult and microfilariae of S. cervi were incubated in 100 μg/ml of DEC, NTZ, and NTZ+AgNPs for 24 and 6 h, respectively at 37 °C. Succinate, malate and isocitrate dehydrogenases were localized by putting the mf and adult worms in the incubating medium containing their respective substrates at 37 °C for 2 h followed by counterstaining in 2% methylene green for 15 min. RESULTS: Maximum inhibition of TCA cycle enzymes was observed in both microfilariae and adult worms treated with nanocomposite of NTZ-AgNPs. Ruptured sheath along with nanoparticles sticking to the body surface was noticed in NTZ+AgNPs treated microfilariae. CONCLUSION: NTZ+AgNPs proved most effective synergistic combination against TCA cycle enzymes which blocked the isocitrate and malate dehydrogenase almost completely, and succinate dehydrogenase to large extent in both microfilariae as well as adult worms of S. cervi. AgNPs ruptured the sheath and allowed the NTZ to attach and penetrate the main body to exert maximum effect on the enzymes. Tehran University of Medical Sciences 2018 /pmc/articles/PMC6243168/ /pubmed/30483331 Text en Copyright© Iranian Society of Parasitology & Tehran University of Medical Sciences http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article KAUSAR, Sharba KHAN, Wajihullah Comparative Efficacy of Diethylcarbamazine, Nitazoxanide and Nanocomposite of Nitazoxanide and Silver Nanoparticles on the Dehydrogenases of TCA Cycle in Setaria cervi, in Vitro |
title | Comparative Efficacy of Diethylcarbamazine, Nitazoxanide and Nanocomposite of Nitazoxanide and Silver Nanoparticles on the Dehydrogenases of TCA Cycle in Setaria cervi, in Vitro |
title_full | Comparative Efficacy of Diethylcarbamazine, Nitazoxanide and Nanocomposite of Nitazoxanide and Silver Nanoparticles on the Dehydrogenases of TCA Cycle in Setaria cervi, in Vitro |
title_fullStr | Comparative Efficacy of Diethylcarbamazine, Nitazoxanide and Nanocomposite of Nitazoxanide and Silver Nanoparticles on the Dehydrogenases of TCA Cycle in Setaria cervi, in Vitro |
title_full_unstemmed | Comparative Efficacy of Diethylcarbamazine, Nitazoxanide and Nanocomposite of Nitazoxanide and Silver Nanoparticles on the Dehydrogenases of TCA Cycle in Setaria cervi, in Vitro |
title_short | Comparative Efficacy of Diethylcarbamazine, Nitazoxanide and Nanocomposite of Nitazoxanide and Silver Nanoparticles on the Dehydrogenases of TCA Cycle in Setaria cervi, in Vitro |
title_sort | comparative efficacy of diethylcarbamazine, nitazoxanide and nanocomposite of nitazoxanide and silver nanoparticles on the dehydrogenases of tca cycle in setaria cervi, in vitro |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243168/ https://www.ncbi.nlm.nih.gov/pubmed/30483331 |
work_keys_str_mv | AT kausarsharba comparativeefficacyofdiethylcarbamazinenitazoxanideandnanocompositeofnitazoxanideandsilvernanoparticlesonthedehydrogenasesoftcacycleinsetariacerviinvitro AT khanwajihullah comparativeefficacyofdiethylcarbamazinenitazoxanideandnanocompositeofnitazoxanideandsilvernanoparticlesonthedehydrogenasesoftcacycleinsetariacerviinvitro |