Cargando…
Blood Clearance of Citric Acid-Coated Superparamagnetic Iron Oxide Nanoparticles in Rats - a Pilot Study
Superparamagnetic iron oxide nanoparticles are primarily utilized for different biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, cancer treatment, targeted delivery of drugs or genes and biosensors. Nanoparticles are interesting due to their unique proprieties together...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medical University Publishing House Craiova
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243511/ https://www.ncbi.nlm.nih.gov/pubmed/30538834 http://dx.doi.org/10.12865/CHSJ.41.04.02 |
_version_ | 1783371984991682560 |
---|---|
author | TRINCU, N.F. BALȘEANU, T.A. UNGUREANU, B.S. FIFERE, A. PIRICI, I. SĂFTOIU, A. NEAMȚU, J. |
author_facet | TRINCU, N.F. BALȘEANU, T.A. UNGUREANU, B.S. FIFERE, A. PIRICI, I. SĂFTOIU, A. NEAMȚU, J. |
author_sort | TRINCU, N.F. |
collection | PubMed |
description | Superparamagnetic iron oxide nanoparticles are primarily utilized for different biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, cancer treatment, targeted delivery of drugs or genes and biosensors. Nanoparticles are interesting due to their unique proprieties together with minor side effects. It is essential to determine the blood clearance of superparamagnetic nanoparticles (SPIONs) for in vivo biomedical applications, to ensure their optimum clinical use. The purpose of this study was to evaluate the elimination kinetic of citric-acid iron oxide nanoparticles in blood via intravenous injection in rats. Animals were blood sampled at different time intervals, ranging from 30 minutes to 24 hours after injection. The decay of SPIONs in blood was analyzed using electron paramagnetic resonance (EPR) technique. The results suggest that the injected iron oxide nanoparticles are rapidly cleared from circulation, with half-life of elimination process from the bloodstream about 14.06 minutes. |
format | Online Article Text |
id | pubmed-6243511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Medical University Publishing House Craiova |
record_format | MEDLINE/PubMed |
spelling | pubmed-62435112018-12-11 Blood Clearance of Citric Acid-Coated Superparamagnetic Iron Oxide Nanoparticles in Rats - a Pilot Study TRINCU, N.F. BALȘEANU, T.A. UNGUREANU, B.S. FIFERE, A. PIRICI, I. SĂFTOIU, A. NEAMȚU, J. Curr Health Sci J Original Paper Superparamagnetic iron oxide nanoparticles are primarily utilized for different biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, cancer treatment, targeted delivery of drugs or genes and biosensors. Nanoparticles are interesting due to their unique proprieties together with minor side effects. It is essential to determine the blood clearance of superparamagnetic nanoparticles (SPIONs) for in vivo biomedical applications, to ensure their optimum clinical use. The purpose of this study was to evaluate the elimination kinetic of citric-acid iron oxide nanoparticles in blood via intravenous injection in rats. Animals were blood sampled at different time intervals, ranging from 30 minutes to 24 hours after injection. The decay of SPIONs in blood was analyzed using electron paramagnetic resonance (EPR) technique. The results suggest that the injected iron oxide nanoparticles are rapidly cleared from circulation, with half-life of elimination process from the bloodstream about 14.06 minutes. Medical University Publishing House Craiova 2015 2015-12-22 /pmc/articles/PMC6243511/ /pubmed/30538834 http://dx.doi.org/10.12865/CHSJ.41.04.02 Text en Copyright © 2014, Medical University Publishing House Craiova http://creativecommons.org/licenses/by-nc-sa/4.0/ This is an open-access article distributed under the terms of a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, which permits unrestricted use, adaptation, distribution and reproduction in any medium, non-commercially, provided the new creations are licensed under identical terms as the original work and the original work is properly cited. |
spellingShingle | Original Paper TRINCU, N.F. BALȘEANU, T.A. UNGUREANU, B.S. FIFERE, A. PIRICI, I. SĂFTOIU, A. NEAMȚU, J. Blood Clearance of Citric Acid-Coated Superparamagnetic Iron Oxide Nanoparticles in Rats - a Pilot Study |
title | Blood Clearance of Citric Acid-Coated Superparamagnetic Iron Oxide Nanoparticles in Rats - a Pilot Study |
title_full | Blood Clearance of Citric Acid-Coated Superparamagnetic Iron Oxide Nanoparticles in Rats - a Pilot Study |
title_fullStr | Blood Clearance of Citric Acid-Coated Superparamagnetic Iron Oxide Nanoparticles in Rats - a Pilot Study |
title_full_unstemmed | Blood Clearance of Citric Acid-Coated Superparamagnetic Iron Oxide Nanoparticles in Rats - a Pilot Study |
title_short | Blood Clearance of Citric Acid-Coated Superparamagnetic Iron Oxide Nanoparticles in Rats - a Pilot Study |
title_sort | blood clearance of citric acid-coated superparamagnetic iron oxide nanoparticles in rats - a pilot study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243511/ https://www.ncbi.nlm.nih.gov/pubmed/30538834 http://dx.doi.org/10.12865/CHSJ.41.04.02 |
work_keys_str_mv | AT trincunf bloodclearanceofcitricacidcoatedsuperparamagneticironoxidenanoparticlesinratsapilotstudy AT balseanuta bloodclearanceofcitricacidcoatedsuperparamagneticironoxidenanoparticlesinratsapilotstudy AT ungureanubs bloodclearanceofcitricacidcoatedsuperparamagneticironoxidenanoparticlesinratsapilotstudy AT fiferea bloodclearanceofcitricacidcoatedsuperparamagneticironoxidenanoparticlesinratsapilotstudy AT piricii bloodclearanceofcitricacidcoatedsuperparamagneticironoxidenanoparticlesinratsapilotstudy AT saftoiua bloodclearanceofcitricacidcoatedsuperparamagneticironoxidenanoparticlesinratsapilotstudy AT neamtuj bloodclearanceofcitricacidcoatedsuperparamagneticironoxidenanoparticlesinratsapilotstudy |