Cargando…

Tailoring atomic layer growth at the liquid-metal interface

Engineering atomic structures at metal surfaces represents an important step in the development of novel nanomaterials and nanodevices, but relies predominantly on atomic/molecular beam epitaxy under ultrahigh vacuum conditions, where controlling the deposition processes remains challenging. By usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Hai, Waghray, Deepali, Knoppe, Stefan, Dehaen, Wim, Verbiest, Thierry, De Feyter, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244000/
https://www.ncbi.nlm.nih.gov/pubmed/30459306
http://dx.doi.org/10.1038/s41467-018-07381-w
Descripción
Sumario:Engineering atomic structures at metal surfaces represents an important step in the development of novel nanomaterials and nanodevices, but relies predominantly on atomic/molecular beam epitaxy under ultrahigh vacuum conditions, where controlling the deposition processes remains challenging. By using solution-borne nanosized gold clusters as a precursor, here we develop a wet deposition protocol to the fabrication of atomically flat gold nanoislands, so as to utilize the dynamic exchange of surface-active molecules at the liquid-metal interface for manipulating the growth kinetics of ultrathin metallic nanostructures. While remarkable shape and size selection of gold nanoislands is observed, our experimental and theoretical investigations provide compelling evidences that organic adsorbates can impart a bias to the island orientation by preferred adsorption and alignment and intervene in the assembly and disassembly of adatom islands by complexing with Au adatoms. This approach offers a simple solution to regulate atomic layer growth of metals at ambient conditions.