Cargando…
Machine learning material properties from the periodic table using convolutional neural networks
In recent years, convolutional neural networks (CNNs) have achieved great success in image recognition and shown powerful feature extraction ability. Here we show that CNNs can learn the inner structure and chemical information in the periodic table. Using the periodic table as representation, and f...
Autores principales: | Zheng, Xiaolong, Zheng, Peng, Zhang, Rui-Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244172/ https://www.ncbi.nlm.nih.gov/pubmed/30542592 http://dx.doi.org/10.1039/c8sc02648c |
Ejemplares similares
-
Automatic materials characterization from infrared spectra using convolutional neural networks
por: Jung, Guwon, et al.
Publicado: (2023) -
Understanding Periodic and Non-periodic Chemistry in Periodic Tables
por: Cao, Changsu, et al.
Publicado: (2021) -
Glass: Home of the Periodic Table
por: Shakhgildyan, Georgiy, et al.
Publicado: (2020) -
Recreation of the periodic table with an unsupervised machine learning algorithm
por: Kusaba, Minoru, et al.
Publicado: (2021) -
The mathematics of the periodic table
por: Rouvray, D H
Publicado: (2006)