Cargando…
High-resolution gridded soil moisture and soil temperature datasets for the Indian monsoon region
High-resolution soil moisture/temperature (SM/ST) are critical components of the growing demand for fine-scale products over the Indian monsoon region (IMR) which has diverse land-surface characteristics. This demand is fueled by findings that improved representation of land-state help improve rainf...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244185/ https://www.ncbi.nlm.nih.gov/pubmed/30457572 http://dx.doi.org/10.1038/sdata.2018.264 |
Sumario: | High-resolution soil moisture/temperature (SM/ST) are critical components of the growing demand for fine-scale products over the Indian monsoon region (IMR) which has diverse land-surface characteristics. This demand is fueled by findings that improved representation of land-state help improve rainfall/flood prediction. Here we report on the development of a high-resolution (4 km and 3 hourly) SM/ST product for 2001–2014 during Indian monsoon seasons (June–September). First, the quality of atmospheric fields from five reanalysis sources was examined to identify realistic forcing to a land data assimilation system (LDAS). The evaluation of developed SM/ST against observations highlighted the importance of quality forcing fields. There is a significant relation between the forcing error and the errors in the SM/ST. A combination of forcing fields was used to develop 14-years of SM/ST data. This dataset captured inter-annual, intra-seasonal, and diurnal variations under different monsoon conditions. When the mesoscale model was initialized using the SM/ST data, improved simulations of heavy rain events was evident, demonstrating the value of the data over IMR. |
---|