Cargando…
Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units
Unplanned extubation (UE) can be associated with fatal outcome; however, an accurate model for predicting the mortality of UE patients in intensive care units (ICU) is lacking. Therefore, we aim to compare the performances of various machine learning models and conventional parameters to predict the...
Autores principales: | Hsieh, Meng Hsuen, Hsieh, Meng Ju, Chen, Chin-Ming, Hsieh, Chia-Chang, Chao, Chien-Ming, Lai, Chih-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244193/ https://www.ncbi.nlm.nih.gov/pubmed/30459331 http://dx.doi.org/10.1038/s41598-018-35582-2 |
Ejemplares similares
-
An Artificial Neural Network Model for Predicting Successful Extubation in Intensive Care Units
por: Hsieh, Meng-Hsuen, et al.
Publicado: (2018) -
Predicting weaning difficulty for planned extubation patients with an artificial neural network
por: Hsieh, Meng Hsuen, et al.
Publicado: (2019) -
Prognostic factors and outcomes of unplanned extubation
por: Chao, Chien-Ming, et al.
Publicado: (2017) -
Multidisciplinary interventions and continuous quality improvement to reduce unplanned extubation in adult intensive care units: A 15-year experience
por: Chao, Chien-Ming, et al.
Publicado: (2017) -
Unplanned extubation in the intensive care unit: what are the consequences?
por: Vianna, A, et al.
Publicado: (2007)