Cargando…
Melanocortin 2 receptor antagonists in canine pituitary-dependent hypercortisolism: in vitro studies
Canine hypercortisolism is most often caused by an ACTH-secreting pituitary adenoma (pituitary-dependent hypercortisolism; PDH). An interesting target for a selective medical treatment of PDH would be the receptor for ACTH: the melanocortin 2 receptor (MC2R). In this study we investigated whether tw...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244543/ https://www.ncbi.nlm.nih.gov/pubmed/30187173 http://dx.doi.org/10.1007/s11259-018-9737-x |
Sumario: | Canine hypercortisolism is most often caused by an ACTH-secreting pituitary adenoma (pituitary-dependent hypercortisolism; PDH). An interesting target for a selective medical treatment of PDH would be the receptor for ACTH: the melanocortin 2 receptor (MC2R). In this study we investigated whether two peptide compounds, BIM-22776 (#776) and BIM-22A299 (#299), are effective MC2R antagonists in vitro. Their effects on cortisol production and mRNA expression of steroidogenic enzymes, MC2R and melanocortin 2 receptor accessory protein (MRAP) were evaluated in primary adrenocortical cell cultures (n = 8) of normal canine adrenal glands. Cortisol production stimulated by 50 nM ACTH was dose-dependently inhibited by #299 (inhibition 90.7 ± 2.3% at 5 μM) and by #776 (inhibition 38.0 ± 5.2% at 5 μM). The ACTH-stimulated mRNA expression of steroidogenic enzymes, MC2R and MRAP was significantly inhibited by both compounds, but most potently by #299. These results indicate that canine primary cell culture is a valuable in vitro system to test MC2R antagonists, and that these compounds, but especially #299, are effective MC2R antagonists in vitro. To determine its efficacy in vivo, further studies are warranted. Antagonism of the MC2R is a promising potential treatment approach in canine PDH. |
---|