Cargando…

The role of autophagy in the midgut epithelium of Parachela (Tardigrada)

The process of cell death has been detected in the midgut epithelium of four tardigrade species which belong to Parachela: Macrobiotus diversus, Macrobiotus polonicus, Hypsibius dujardini and Xerobiotus pseudohufelandi. They originated from different environments so they have been affected by differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Rost-Roszkowska, M. M., Janelt, K., Poprawa, I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244646/
https://www.ncbi.nlm.nih.gov/pubmed/30524174
http://dx.doi.org/10.1007/s00435-018-0407-x
Descripción
Sumario:The process of cell death has been detected in the midgut epithelium of four tardigrade species which belong to Parachela: Macrobiotus diversus, Macrobiotus polonicus, Hypsibius dujardini and Xerobiotus pseudohufelandi. They originated from different environments so they have been affected by different stressors: M. polonicus was extracted from a moss sample collected from a railway embankment; M. diversus was extracted from a moss sample collected from a petrol station; X. pseudohufelandi originated from sandy and dry soil samples collected from a pine forest; H. dujardini was obtained commercially but it lives in a freshwater or even in wet terrestrial environment. Autophagy is caused in the digestive cells of the midgut epithelium by different factors. However, a distinct crosstalk between autophagy and necrosis in tardigrades’ digestive system has been described at the ultrastructural level. Apoptosis has not been detected in the midgut epithelium of analyzed species. We also determined that necrosis is the major process that is responsible for the degeneration of the midgut epithelium of tardigrades, and “apoptosis–necrosis continuum” which is the relationship between these two processes, is disrupted.