Cargando…
A New Application of Unsupervised Learning to Nighttime Sea Fog Detection
This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the 3.7 μm and 10.8 μm channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorologic...
Autores principales: | Shin, Daegeun, Kim, Jae-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Meteorological Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244660/ https://www.ncbi.nlm.nih.gov/pubmed/30524666 http://dx.doi.org/10.1007/s13143-018-0050-y |
Ejemplares similares
-
Sea Fog Dissipation Prediction in Incheon Port and Haeundae Beach Using Machine Learning and Deep Learning
por: Han, Jin Hyun, et al.
Publicado: (2021) -
FogFrame: a framework for IoT application execution in the fog
por: Skarlat, Olena, et al.
Publicado: (2021) -
Clinical and life style factors related to the nighttime blood pressure, nighttime dipping and their phenotypes in Korean hypertensive patients
por: Kim, Byung Sik, et al.
Publicado: (2023) -
Unsupervised Learning in Detection of Gene Transfer
por: Hamel, L., et al.
Publicado: (2008) -
Demonstration of measuring sea fog with an SNSPD-based Lidar system
por: Zhu, Jiang, et al.
Publicado: (2017)