Cargando…
Jensen–Steffensen inequality for strongly convex functions
The Jensen inequality for convex functions holds under the assumption that all of the included weights are nonnegative. If we allow some of the weights to be negative, such an inequality is called the Jensen–Steffensen inequality for convex functions. In this paper we prove the Jensen–Steffensen ine...
Autor principal: | Klaričić Bakula, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244717/ https://www.ncbi.nlm.nih.gov/pubmed/30839851 http://dx.doi.org/10.1186/s13660-018-1897-2 |
Ejemplares similares
-
Bellman–Steffensen type inequalities
por: Jakšetić, Julije, et al.
Publicado: (2018) -
Generalized Steffensen’s inequality by Lidstone interpolation and Montogomery’s identity
por: Fahad, Asfand, et al.
Publicado: (2018) -
About the sharpness of the Jensen inequality
por: Pečarić, Ðilda, et al.
Publicado: (2018) -
Some complementary inequalities to Jensen’s operator inequality
por: Mićić, Jadranka, et al.
Publicado: (2018) -
An introduction to the theory of functional equations and inequalities: Cauchy’s equation and Jensen’s inequality
por: Gilányi, Attila
Publicado: (2009)