Cargando…
Refinement of Jensen’s inequality and estimation of f- and Rényi divergence via Montgomery identity
Jensen’s inequality is important for obtaining inequalities for divergence between probability distribution. By applying a refinement of Jensen’s inequality (Horváth et al. in Math. Inequal. Appl. 14:777–791, 2011) and introducing a new functional based on an f-divergence functional, we obtain some...
Autores principales: | Khan, Khuram Ali, Niaz, Tasadduq, Pec̆arić, Ðilda, Pec̆arić, Josip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244721/ https://www.ncbi.nlm.nih.gov/pubmed/30839843 http://dx.doi.org/10.1186/s13660-018-1902-9 |
Ejemplares similares
-
On generalization of refinement of Jensen’s inequality using Fink’s identity and Abel-Gontscharoff Green function
por: Niaz, Tasadduq, et al.
Publicado: (2017) -
Zipf–Mandelbrot law, f-divergences and the Jensen-type interpolating inequalities
por: Lovričević, Neda, et al.
Publicado: (2018) -
About the sharpness of the Jensen inequality
por: Pečarić, Ðilda, et al.
Publicado: (2018) -
Improvements of Jensen-Type Inequalities for Diamond-α Integrals
por: Bibi, Rabia, et al.
Publicado: (2014) -
New generalizations of Popoviciu-type inequalities via new Green’s functions and Montgomery identity
por: Mehmood, Nasir, et al.
Publicado: (2017)