Cargando…
Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5′-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism
BACKGROUND AND OBJECTIVES: Previous studies have shown that nutritional status can alter drug metabolism which may result in treatment failure or untoward side effects. This study assesses the effect of two nutritional conditions, short-term fasting, and a short-term high fat diet (HFD) on cytochrom...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244726/ https://www.ncbi.nlm.nih.gov/pubmed/29876844 http://dx.doi.org/10.1007/s13318-018-0487-5 |
_version_ | 1783372105544368128 |
---|---|
author | Lammers, Laureen A. Achterbergh, Roos Romijn, Johannes A. Mathôt, Ron A. A. |
author_facet | Lammers, Laureen A. Achterbergh, Roos Romijn, Johannes A. Mathôt, Ron A. A. |
author_sort | Lammers, Laureen A. |
collection | PubMed |
description | BACKGROUND AND OBJECTIVES: Previous studies have shown that nutritional status can alter drug metabolism which may result in treatment failure or untoward side effects. This study assesses the effect of two nutritional conditions, short-term fasting, and a short-term high fat diet (HFD) on cytochrome P450 3A4 (CYP3A4) and uridine 5′-diphospho-glucuronosyltransferase (UGT) mediated drug metabolism by studying the pharmacokinetics of midazolam and its main metabolites. METHODS: In a randomized-controlled cross-over trial, nine healthy subjects received a single intravenous administration of 0.015 mg/kg midazolam after: (1) an overnight fast (control); (2) 36 h of fasting; and (3) an overnight fast after 3 days of a HFD consisting of 500 ml of cream supplemented to their regular diet. Pharmacokinetic parameters were analyzed simultaneously using non-linear mixed-effects modeling. RESULTS: Short-term fasting increased CYP3A4-mediated midazolam clearance by 12% (p < 0.01) and decreased UGT-mediated metabolism apparent 1-OH-midazolam clearance by 13% (p < 0.01) by decreasing the ratio of clearance and the fraction metabolite formed (ΔCL(1-OH-MDZ)/f(1-OH-MDZ)). Furthermore, short-term fasting decreased apparent clearance of 1-OH-midazolam-O-glucuronide (CL(1-OH-MDZ-glucuronide)/(f(1-OH-MDZ-glucuronide) × f(1-OH-MDZ))) by 20% (p < 0.01). The HFD did not affect systemic clearance of midazolam or metabolites. CONCLUSIONS: Short-term fasting differentially alters midazolam metabolism by increasing CYP3A4-mediated metabolism but by decreasing UGT-mediated metabolism. In contrast, a short-term HFD did not affect systemic clearance of midazolam. |
format | Online Article Text |
id | pubmed-6244726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-62447262018-12-04 Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5′-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism Lammers, Laureen A. Achterbergh, Roos Romijn, Johannes A. Mathôt, Ron A. A. Eur J Drug Metab Pharmacokinet Original Research Article BACKGROUND AND OBJECTIVES: Previous studies have shown that nutritional status can alter drug metabolism which may result in treatment failure or untoward side effects. This study assesses the effect of two nutritional conditions, short-term fasting, and a short-term high fat diet (HFD) on cytochrome P450 3A4 (CYP3A4) and uridine 5′-diphospho-glucuronosyltransferase (UGT) mediated drug metabolism by studying the pharmacokinetics of midazolam and its main metabolites. METHODS: In a randomized-controlled cross-over trial, nine healthy subjects received a single intravenous administration of 0.015 mg/kg midazolam after: (1) an overnight fast (control); (2) 36 h of fasting; and (3) an overnight fast after 3 days of a HFD consisting of 500 ml of cream supplemented to their regular diet. Pharmacokinetic parameters were analyzed simultaneously using non-linear mixed-effects modeling. RESULTS: Short-term fasting increased CYP3A4-mediated midazolam clearance by 12% (p < 0.01) and decreased UGT-mediated metabolism apparent 1-OH-midazolam clearance by 13% (p < 0.01) by decreasing the ratio of clearance and the fraction metabolite formed (ΔCL(1-OH-MDZ)/f(1-OH-MDZ)). Furthermore, short-term fasting decreased apparent clearance of 1-OH-midazolam-O-glucuronide (CL(1-OH-MDZ-glucuronide)/(f(1-OH-MDZ-glucuronide) × f(1-OH-MDZ))) by 20% (p < 0.01). The HFD did not affect systemic clearance of midazolam or metabolites. CONCLUSIONS: Short-term fasting differentially alters midazolam metabolism by increasing CYP3A4-mediated metabolism but by decreasing UGT-mediated metabolism. In contrast, a short-term HFD did not affect systemic clearance of midazolam. Springer International Publishing 2018-06-06 2018 /pmc/articles/PMC6244726/ /pubmed/29876844 http://dx.doi.org/10.1007/s13318-018-0487-5 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Research Article Lammers, Laureen A. Achterbergh, Roos Romijn, Johannes A. Mathôt, Ron A. A. Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5′-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism |
title | Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5′-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism |
title_full | Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5′-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism |
title_fullStr | Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5′-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism |
title_full_unstemmed | Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5′-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism |
title_short | Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5′-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism |
title_sort | nutritional status differentially alters cytochrome p450 3a4 (cyp3a4) and uridine 5′-diphospho-glucuronosyltransferase (ugt) mediated drug metabolism: effect of short-term fasting and high fat diet on midazolam metabolism |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244726/ https://www.ncbi.nlm.nih.gov/pubmed/29876844 http://dx.doi.org/10.1007/s13318-018-0487-5 |
work_keys_str_mv | AT lammerslaureena nutritionalstatusdifferentiallyalterscytochromep4503a4cyp3a4anduridine5diphosphoglucuronosyltransferaseugtmediateddrugmetabolismeffectofshorttermfastingandhighfatdietonmidazolammetabolism AT achterberghroos nutritionalstatusdifferentiallyalterscytochromep4503a4cyp3a4anduridine5diphosphoglucuronosyltransferaseugtmediateddrugmetabolismeffectofshorttermfastingandhighfatdietonmidazolammetabolism AT romijnjohannesa nutritionalstatusdifferentiallyalterscytochromep4503a4cyp3a4anduridine5diphosphoglucuronosyltransferaseugtmediateddrugmetabolismeffectofshorttermfastingandhighfatdietonmidazolammetabolism AT mathotronaa nutritionalstatusdifferentiallyalterscytochromep4503a4cyp3a4anduridine5diphosphoglucuronosyltransferaseugtmediateddrugmetabolismeffectofshorttermfastingandhighfatdietonmidazolammetabolism |