Cargando…

A Crank–Nicolson finite spectral element method for the 2D non-stationary Stokes equations about vorticity–stream functions

In this article, we first develop a semi-discretized Crank–Nicolson format about time for the two-dimensional non-stationary Stokes equations about vorticity–stream functions and analyze the existence, uniqueness, stability, and convergence of the semi-discretized Crank–Nicolson solutions. Then we e...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yanjie, Luo, Zhendong, Teng, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244727/
https://www.ncbi.nlm.nih.gov/pubmed/30839842
http://dx.doi.org/10.1186/s13660-018-1914-5
Descripción
Sumario:In this article, we first develop a semi-discretized Crank–Nicolson format about time for the two-dimensional non-stationary Stokes equations about vorticity–stream functions and analyze the existence, uniqueness, stability, and convergence of the semi-discretized Crank–Nicolson solutions. Then we establish a fully discretized Crank–Nicolson finite spectral element format based on the quadrilateral elements for the two-dimensional non-stationary Stokes equations about vorticity–stream functions and analyze the existence, uniqueness, stability, and convergence of the Crank–Nicolson finite spectral element solutions. In the end, we use three numerical examples to confirm the validity of our theoretical conclusions.