Cargando…

Quantitative unique continuation for the heat equations with inverse square potential

In this paper, we investigate the unique continuation properties for multi-dimensional heat equations with inverse square potential in a bounded convex domain Ω of [Formula: see text] . We establish observation estimates for solutions of equations. Our result shows that the value of the solutions ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Guojie, Li, Keqiang, Zhang, Yuanyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244741/
https://www.ncbi.nlm.nih.gov/pubmed/30839778
http://dx.doi.org/10.1186/s13660-018-1907-4
_version_ 1783372108780273664
author Zheng, Guojie
Li, Keqiang
Zhang, Yuanyuan
author_facet Zheng, Guojie
Li, Keqiang
Zhang, Yuanyuan
author_sort Zheng, Guojie
collection PubMed
description In this paper, we investigate the unique continuation properties for multi-dimensional heat equations with inverse square potential in a bounded convex domain Ω of [Formula: see text] . We establish observation estimates for solutions of equations. Our result shows that the value of the solutions can be determined uniquely by their value on an open subset ω of Ω at any given positive time L.
format Online
Article
Text
id pubmed-6244741
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-62447412018-12-04 Quantitative unique continuation for the heat equations with inverse square potential Zheng, Guojie Li, Keqiang Zhang, Yuanyuan J Inequal Appl Research In this paper, we investigate the unique continuation properties for multi-dimensional heat equations with inverse square potential in a bounded convex domain Ω of [Formula: see text] . We establish observation estimates for solutions of equations. Our result shows that the value of the solutions can be determined uniquely by their value on an open subset ω of Ω at any given positive time L. Springer International Publishing 2018-11-14 2018 /pmc/articles/PMC6244741/ /pubmed/30839778 http://dx.doi.org/10.1186/s13660-018-1907-4 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Zheng, Guojie
Li, Keqiang
Zhang, Yuanyuan
Quantitative unique continuation for the heat equations with inverse square potential
title Quantitative unique continuation for the heat equations with inverse square potential
title_full Quantitative unique continuation for the heat equations with inverse square potential
title_fullStr Quantitative unique continuation for the heat equations with inverse square potential
title_full_unstemmed Quantitative unique continuation for the heat equations with inverse square potential
title_short Quantitative unique continuation for the heat equations with inverse square potential
title_sort quantitative unique continuation for the heat equations with inverse square potential
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244741/
https://www.ncbi.nlm.nih.gov/pubmed/30839778
http://dx.doi.org/10.1186/s13660-018-1907-4
work_keys_str_mv AT zhengguojie quantitativeuniquecontinuationfortheheatequationswithinversesquarepotential
AT likeqiang quantitativeuniquecontinuationfortheheatequationswithinversesquarepotential
AT zhangyuanyuan quantitativeuniquecontinuationfortheheatequationswithinversesquarepotential