Cargando…
Quantitative unique continuation for the heat equations with inverse square potential
In this paper, we investigate the unique continuation properties for multi-dimensional heat equations with inverse square potential in a bounded convex domain Ω of [Formula: see text] . We establish observation estimates for solutions of equations. Our result shows that the value of the solutions ca...
Autores principales: | Zheng, Guojie, Li, Keqiang, Zhang, Yuanyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6244741/ https://www.ncbi.nlm.nih.gov/pubmed/30839778 http://dx.doi.org/10.1186/s13660-018-1907-4 |
Ejemplares similares
-
Quantitative unique continuation for the linear coupled heat equations
por: Zheng, Guojie, et al.
Publicado: (2017) -
Unique continuation for the magnetic Schrödinger equation
por: Laestadius, Andre, et al.
Publicado: (2020) -
Exact solution of the 1D Dirac equation for a pseudoscalar interaction potential with the inverse-square-root variation law
por: Ishkhanyan, A. M., et al.
Publicado: (2023) -
Nonlinear Least Squares for Inverse Problems
por: Chavent, Guy
Publicado: (2009) -
Hierarchical models with inverse-square interaction in harmonic confinement
por: Kawakami, N, et al.
Publicado: (1994)