Cargando…
Manifold learning and maximum likelihood estimation for hyperbolic network embedding
The Popularity-Similarity (PS) model sustains that clustering and hierarchy, properties common to most networks representing complex systems, are the result of an optimisation process in which nodes seek to form ties, not only with the most connected (popular) system components, but also with those...
Autores principales: | Alanis-Lobato, Gregorio, Mier, Pablo, Andrade-Navarro, Miguel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245200/ https://www.ncbi.nlm.nih.gov/pubmed/30533502 http://dx.doi.org/10.1007/s41109-016-0013-0 |
Ejemplares similares
-
Efficient embedding of complex networks to hyperbolic space via their Laplacian
por: Alanis-Lobato, Gregorio, et al.
Publicado: (2016) -
The latent geometry of the human protein interaction network
por: Alanis-Lobato, Gregorio, et al.
Publicado: (2018) -
Foundations of hyperbolic manifolds
por: Ratcliffe, John G
Publicado: (2006) -
Foundations of hyperbolic manifolds
por: Ratcliffe, J G
Publicado: (1994) -
Foundations of hyperbolic manifolds /
por: Ratcliffe, John G., 1948-
Publicado: (2006)