Cargando…
Guideline-based learning for standard plane extraction in 3-D echocardiography
The extraction of six standard planes in 3-D cardiac ultrasound plays an important role in clinical examination to analyze cardiac function. A guideline-based learning method for efficient and accurate standard plane extraction is proposed. A cardiac ultrasound guideline determines appropriate opera...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245496/ https://www.ncbi.nlm.nih.gov/pubmed/30840749 http://dx.doi.org/10.1117/1.JMI.5.4.044503 |
Sumario: | The extraction of six standard planes in 3-D cardiac ultrasound plays an important role in clinical examination to analyze cardiac function. A guideline-based learning method for efficient and accurate standard plane extraction is proposed. A cardiac ultrasound guideline determines appropriate operation steps for clinical examinations. The idea of guideline-based learning is incorporating machine learning approaches into each stage of the guideline. First, Hough forest with hierarchical search is applied for 3-D feature point detection. Second, initial planes are determined using anatomical regularities according to the guideline. Finally, a regression forest integrated with constraints of plane regularities is applied for refining each plane. The proposed method was evaluated on a 3-D cardiac ultrasound dataset and a synthetic dataset. Compared with other plane extraction methods, it demonstrated an improved accuracy with a significantly faster running time of [Formula: see text]. Furthermore, it showed the proposed method was robust for a range abnormalities and image qualities, which would be seen in clinical practice. |
---|