Cargando…
Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks
Multiplexing, the simultaneous sequencing of multiple barcoded DNA samples on a single flow cell, has made Oxford Nanopore sequencing cost-effective for small genomes. However, it depends on the ability to sort the resulting sequencing reads by barcode, and current demultiplexing tools fail to class...
Autores principales: | Wick, Ryan R., Judd, Louise M., Holt, Kathryn E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245502/ https://www.ncbi.nlm.nih.gov/pubmed/30458005 http://dx.doi.org/10.1371/journal.pcbi.1006583 |
Ejemplares similares
-
Performance of neural network basecalling tools for Oxford Nanopore sequencing
por: Wick, Ryan R., et al.
Publicado: (2019) -
Assembling the perfect bacterial genome using Oxford Nanopore and Illumina sequencing
por: Wick, Ryan R., et al.
Publicado: (2023) -
Recovery of small plasmid sequences via Oxford Nanopore sequencing
por: Wick, Ryan R., et al.
Publicado: (2021) -
Barcode demultiplexing of nanopore sequencing raw signals by unsupervised machine learning
por: Papetti, Daniele M., et al.
Publicado: (2023) -
HycDemux: a hybrid unsupervised approach for accurate barcoded sample demultiplexing in nanopore sequencing
por: Han, Renmin, et al.
Publicado: (2023)