Cargando…
Predicting acute kidney injury at hospital re-entry using high-dimensional electronic health record data
Acute Kidney Injury (AKI), a sudden decline in kidney function, is associated with increased mortality, morbidity, length of stay, and hospital cost. Since AKI is sometimes preventable, there is great interest in prediction. Most existing studies consider all patients and therefore restrict to featu...
Autores principales: | Weisenthal, Samuel J., Quill, Caroline, Farooq, Samir, Kautz, Henry, Zand, Martin S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245516/ https://www.ncbi.nlm.nih.gov/pubmed/30458044 http://dx.doi.org/10.1371/journal.pone.0204920 |
Ejemplares similares
-
2416: A machine learning pipeline to predict acute kidney injury (AKI) in patients without AKI in their most recent hospitalization
por: Weisenthal, Samuel, et al.
Publicado: (2018) -
Visualizing nationwide variation in medicare Part D prescribing patterns
por: Rosenberg, Alexander, et al.
Publicado: (2018) -
Recording animal vocalizations from a UAV: bat echolocation during roost re-entry
por: Kloepper, Laura N., et al.
Publicado: (2018) -
Evaluating automated electronic case report form data entry from electronic health records
por: Cheng, Alex C., et al.
Publicado: (2022) -
High prevalence of hyperlipidaemia in patients with AV re-entry tachycardia and AV nodal re-entry tachycardia
por: Zeljković, Ivan, et al.
Publicado: (2019)