Cargando…
TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs
BACKGROUND: A significant number of adverse drug reactions is caused by unexpected Drug-drug interactions (DDIs). The identification of DDIs becomes crucial before the co-prescription of multiple drugs is made. Such a task in clinics or in drug discovery usually requires high costs and numerous limi...
Autores principales: | Shi, Jian-Yu, Huang, Hua, Li, Jia-Xin, Lei, Peng, Zhang, Yan-Ning, Dong, Kai, Yiu, Siu-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245591/ https://www.ncbi.nlm.nih.gov/pubmed/30453924 http://dx.doi.org/10.1186/s12859-018-2379-8 |
Ejemplares similares
-
A unified solution for different scenarios of predicting drug-target interactions via triple matrix factorization
por: Shi, Jian-Yu, et al.
Publicado: (2018) -
Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization
por: Yu, Hui, et al.
Publicado: (2018) -
Detecting drug communities and predicting comprehensive drug–drug interactions via balance regularized semi-nonnegative matrix factorization
por: Shi, Jian-Yu, et al.
Publicado: (2019) -
Prediction of the Drug–Drug Interaction Types with the Unified Embedding Features from Drug Similarity Networks
por: Yan, Xiao-Ying, et al.
Publicado: (2021) -
Predicting binary, discrete and continued lncRNA-disease associations via a unified framework based on graph regression
por: Shi, Jian-Yu, et al.
Publicado: (2017)