Cargando…
Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
BACKGROUND: Chest radiograph interpretation is critical for the detection of thoracic diseases, including tuberculosis and lung cancer, which affect millions of people worldwide each year. This time-consuming task typically requires expert radiologists to read the images, leading to fatigue-based di...
Autores principales: | Rajpurkar, Pranav, Irvin, Jeremy, Ball, Robyn L., Zhu, Kaylie, Yang, Brandon, Mehta, Hershel, Duan, Tony, Ding, Daisy, Bagul, Aarti, Langlotz, Curtis P., Patel, Bhavik N., Yeom, Kristen W., Shpanskaya, Katie, Blankenberg, Francis G., Seekins, Jayne, Amrhein, Timothy J., Mong, David A., Halabi, Safwan S., Zucker, Evan J., Ng, Andrew Y., Lungren, Matthew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245676/ https://www.ncbi.nlm.nih.gov/pubmed/30457988 http://dx.doi.org/10.1371/journal.pmed.1002686 |
Ejemplares similares
-
Author Correction: Human–machine partnership with artificial intelligence for chest radiograph diagnosis
por: Patel, Bhavik N., et al.
Publicado: (2019) -
Human–machine partnership with artificial intelligence for chest radiograph diagnosis
por: Patel, Bhavik N., et al.
Publicado: (2019) -
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet
por: Bien, Nicholas, et al.
Publicado: (2018) -
AppendiXNet: Deep Learning for Diagnosis of Appendicitis from A Small Dataset of CT Exams Using Video Pretraining
por: Rajpurkar, Pranav, et al.
Publicado: (2020) -
Author Correction: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Huang, Shih-Cheng, et al.
Publicado: (2020)