Cargando…
Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records
BACKGROUND: Emergency admissions are a major source of healthcare spending. We aimed to derive, validate, and compare conventional and machine learning models for prediction of the first emergency admission. Machine learning methods are capable of capturing complex interactions that are likely to be...
Autores principales: | Rahimian, Fatemeh, Salimi-Khorshidi, Gholamreza, Payberah, Amir H., Tran, Jenny, Ayala Solares, Roberto, Raimondi, Francesca, Nazarzadeh, Milad, Canoy, Dexter, Rahimi, Kazem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245681/ https://www.ncbi.nlm.nih.gov/pubmed/30458006 http://dx.doi.org/10.1371/journal.pmed.1002695 |
Ejemplares similares
-
Multi-morbidity and blood pressure trajectories in hypertensive patients: A multiple landmark cohort study
por: Tran, Jenny, et al.
Publicado: (2021) -
Long‐Term Exposure to Elevated Systolic Blood Pressure in Predicting Incident Cardiovascular Disease: Evidence From Large‐Scale Routine Electronic Health Records
por: Ayala Solares, Jose Roberto, et al.
Publicado: (2019) -
Systolic blood pressure, chronic obstructive pulmonary disease and cardiovascular risk
por: Rao, Shishir, et al.
Publicado: (2023) -
Patterns and temporal trends of comorbidity among adult patients with incident cardiovascular disease in the UK between 2000 and 2014: A population-based cohort study
por: Tran, Jenny, et al.
Publicado: (2018) -
BEHRT: Transformer for Electronic Health Records
por: Li, Yikuan, et al.
Publicado: (2020)