Cargando…

On the limit value of compactness of some graph classes

In this paper, we study the limit of compactness which is a graph index originally introduced for measuring structural characteristics of hypermedia. Applying compactness to large scale small-world graphs (Mehler, 2008) observed its limit behaviour to be equal 1. The striking question concerning thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lokot, Tatiana, Mehler, Alexander, Abramov, Olga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245735/
https://www.ncbi.nlm.nih.gov/pubmed/30458027
http://dx.doi.org/10.1371/journal.pone.0207536
Descripción
Sumario:In this paper, we study the limit of compactness which is a graph index originally introduced for measuring structural characteristics of hypermedia. Applying compactness to large scale small-world graphs (Mehler, 2008) observed its limit behaviour to be equal 1. The striking question concerning this finding was whether this limit behaviour resulted from the specifics of small-world graphs or was simply an artefact. In this paper, we determine the necessary and sufficient conditions for any sequence of connected graphs resulting in a limit value of C(B) = 1 which can be generalized with some consideration for the case of disconnected graph classes (Theorem 3). This result can be applied to many well-known classes of connected graphs. Here, we illustrate it by considering four examples. In fact, our proof-theoretical approach allows for quickly obtaining the limit value of compactness for many graph classes sparing computational costs.