Cargando…
SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
BACKGROUND: Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance...
Autores principales: | Sanz, Hector, Valim, Clarissa, Vegas, Esteban, Oller, Josep M., Reverter, Ferran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245920/ https://www.ncbi.nlm.nih.gov/pubmed/30453885 http://dx.doi.org/10.1186/s12859-018-2451-4 |
Ejemplares similares
-
Enhancing SVM for survival data using local invariances and weighting
por: Sanz, Hector, et al.
Publicado: (2020) -
Correction to: Enhancing SVM for survival data using local invariances and weighting
por: Sanz, Hector, et al.
Publicado: (2020) -
Kernel-PCA data integration with enhanced interpretability
por: Reverter, Ferran, et al.
Publicado: (2014) -
Inferring differentially expressed pathways using kernel maximum mean discrepancy-based test
por: Vegas, Esteban, et al.
Publicado: (2016) -
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014)