Cargando…

Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum

Pentachlorophenol (PCP) is a highly toxic pesticide that was first introduced in the 1930s. The alphaproteobacterium Sphingobium chlorophenolicum, which was isolated from PCP-contaminated sediment, has assembled a metabolic pathway capable of completely degrading PCP. This pathway produces four toxi...

Descripción completa

Detalles Bibliográficos
Autores principales: Flood, Jake J., Copley, Shelley D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247019/
https://www.ncbi.nlm.nih.gov/pubmed/30505947
http://dx.doi.org/10.1128/mSystems.00275-18
_version_ 1783372427439374336
author Flood, Jake J.
Copley, Shelley D.
author_facet Flood, Jake J.
Copley, Shelley D.
author_sort Flood, Jake J.
collection PubMed
description Pentachlorophenol (PCP) is a highly toxic pesticide that was first introduced in the 1930s. The alphaproteobacterium Sphingobium chlorophenolicum, which was isolated from PCP-contaminated sediment, has assembled a metabolic pathway capable of completely degrading PCP. This pathway produces four toxic intermediates, including a chlorinated benzoquinone that is a potent alkylating agent and three chlorinated hydroquinones that react with O(2) to produce reactive oxygen species (ROS). RNA-seq analysis revealed that PCP causes a global stress response that resembles responses to proton motive force uncoupling and membrane disruption, while surprisingly, little of the response resembles the responses expected to be produced by the PCP degradation intermediates. Tn-seq was used to identify genes important for fitness in the presence of PCP. By comparing the genes that are important for fitness in wild-type S. chlorophenolicum and a non-PCP-degrading mutant, we identified genes that are important only when the PCP degradation intermediates are produced. These include genes encoding two enzymes that are likely to be involved in protection against ROS. In addition to these enzymes, the endogenous levels of other enzymes that protect cells from oxidative stress appear to mitigate the toxic effects of the chlorinated benzoquinone and hydroquinone metabolites of PCP. The combination of RNA-seq and Tn-seq results identify important mechanisms for defense against the toxicity of PCP. IMPORTANCE Phenolic compounds such as pentachlorophenol (PCP), triclosan, and 2,4-dichlorophenoxyacetic acid (2,4-D) represent a common class of anthropogenic biocides. Despite the novelty of these compounds, many can be degraded by microbes isolated from contaminated sites. However, degradation of this class of chemicals often generates toxic intermediates, which may contribute to their recalcitrance to biodegradation. We have addressed the stresses associated with degradation of PCP by Sphingobium chlorophenolicum by examining the transcriptional response after PCP exposure and identifying genes necessary for growth during both exposure to and degradation of PCP. This work identifies some of the mechanisms that protect cells from this toxic compound and facilitate its degradation. This information could be used to engineer strains capable of improved biodegradation of PCP or similar phenolic pollutants.
format Online
Article
Text
id pubmed-6247019
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-62470192018-11-30 Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum Flood, Jake J. Copley, Shelley D. mSystems Research Article Pentachlorophenol (PCP) is a highly toxic pesticide that was first introduced in the 1930s. The alphaproteobacterium Sphingobium chlorophenolicum, which was isolated from PCP-contaminated sediment, has assembled a metabolic pathway capable of completely degrading PCP. This pathway produces four toxic intermediates, including a chlorinated benzoquinone that is a potent alkylating agent and three chlorinated hydroquinones that react with O(2) to produce reactive oxygen species (ROS). RNA-seq analysis revealed that PCP causes a global stress response that resembles responses to proton motive force uncoupling and membrane disruption, while surprisingly, little of the response resembles the responses expected to be produced by the PCP degradation intermediates. Tn-seq was used to identify genes important for fitness in the presence of PCP. By comparing the genes that are important for fitness in wild-type S. chlorophenolicum and a non-PCP-degrading mutant, we identified genes that are important only when the PCP degradation intermediates are produced. These include genes encoding two enzymes that are likely to be involved in protection against ROS. In addition to these enzymes, the endogenous levels of other enzymes that protect cells from oxidative stress appear to mitigate the toxic effects of the chlorinated benzoquinone and hydroquinone metabolites of PCP. The combination of RNA-seq and Tn-seq results identify important mechanisms for defense against the toxicity of PCP. IMPORTANCE Phenolic compounds such as pentachlorophenol (PCP), triclosan, and 2,4-dichlorophenoxyacetic acid (2,4-D) represent a common class of anthropogenic biocides. Despite the novelty of these compounds, many can be degraded by microbes isolated from contaminated sites. However, degradation of this class of chemicals often generates toxic intermediates, which may contribute to their recalcitrance to biodegradation. We have addressed the stresses associated with degradation of PCP by Sphingobium chlorophenolicum by examining the transcriptional response after PCP exposure and identifying genes necessary for growth during both exposure to and degradation of PCP. This work identifies some of the mechanisms that protect cells from this toxic compound and facilitate its degradation. This information could be used to engineer strains capable of improved biodegradation of PCP or similar phenolic pollutants. American Society for Microbiology 2018-11-20 /pmc/articles/PMC6247019/ /pubmed/30505947 http://dx.doi.org/10.1128/mSystems.00275-18 Text en Copyright © 2018 Flood and Copley. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Flood, Jake J.
Copley, Shelley D.
Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum
title Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum
title_full Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum
title_fullStr Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum
title_full_unstemmed Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum
title_short Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum
title_sort genome-wide analysis of transcriptional changes and genes that contribute to fitness during degradation of the anthropogenic pollutant pentachlorophenol by sphingobium chlorophenolicum
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247019/
https://www.ncbi.nlm.nih.gov/pubmed/30505947
http://dx.doi.org/10.1128/mSystems.00275-18
work_keys_str_mv AT floodjakej genomewideanalysisoftranscriptionalchangesandgenesthatcontributetofitnessduringdegradationoftheanthropogenicpollutantpentachlorophenolbysphingobiumchlorophenolicum
AT copleyshelleyd genomewideanalysisoftranscriptionalchangesandgenesthatcontributetofitnessduringdegradationoftheanthropogenicpollutantpentachlorophenolbysphingobiumchlorophenolicum