Cargando…
A Predictive Model for Guillain–Barré Syndrome Based on Ensemble Methods
Nowadays, Machine Learning methods have proven to be highly effective on the identification of various types of diseases, in the form of predictive models. Guillain–Barré syndrome (GBS) is a potentially fatal autoimmune neurological disorder that has barely been studied with computational techniques...
Autores principales: | Canul-Reich, Juana, Hernández-Torruco, José, Chávez-Bosquez, Oscar, Hernández-Ocaña, Betania |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247730/ https://www.ncbi.nlm.nih.gov/pubmed/30532769 http://dx.doi.org/10.1155/2018/1576927 |
Ejemplares similares
-
A Predictive Model for Guillain-Barré Syndrome Based on Single Learning Algorithms
por: Canul-Reich, Juana, et al.
Publicado: (2017) -
Feature Selection for Better Identification of Subtypes of Guillain-Barré Syndrome
por: Hernández-Torruco, José, et al.
Publicado: (2014) -
Supervised Deep Learning Techniques for Image Description: A Systematic Review
por: López-Sánchez, Marco, et al.
Publicado: (2023) -
Outbreak of Guillain-Barre syndrome in Peru
por: Díaz-Soto, S., et al.
Publicado: (2019) -
Guillain–Barré syndrome
por: Mirian, Ario, et al.
Publicado: (2021)