Cargando…

The Rényi divergence enables accurate and precise cluster analysis for localization microscopy

MOTIVATION: Clustering analysis is a key technique for quantitatively characterizing structures in localization microscopy images. To build up accurate information about biological structures, it is critical that the quantification is both accurate (close to the ground truth) and precise (has small...

Descripción completa

Detalles Bibliográficos
Autores principales: Staszowska, Adela D, Fox-Roberts, Patrick, Hirvonen, Liisa M, Peddie, Christopher J, Collinson, Lucy M, Jones, Gareth E, Cox, Susan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247934/
https://www.ncbi.nlm.nih.gov/pubmed/29868717
http://dx.doi.org/10.1093/bioinformatics/bty403
_version_ 1783372566925148160
author Staszowska, Adela D
Fox-Roberts, Patrick
Hirvonen, Liisa M
Peddie, Christopher J
Collinson, Lucy M
Jones, Gareth E
Cox, Susan
author_facet Staszowska, Adela D
Fox-Roberts, Patrick
Hirvonen, Liisa M
Peddie, Christopher J
Collinson, Lucy M
Jones, Gareth E
Cox, Susan
author_sort Staszowska, Adela D
collection PubMed
description MOTIVATION: Clustering analysis is a key technique for quantitatively characterizing structures in localization microscopy images. To build up accurate information about biological structures, it is critical that the quantification is both accurate (close to the ground truth) and precise (has small scatter and is reproducible). RESULTS: Here, we describe how the Rényi divergence can be used for cluster radius measurements in localization microscopy data. We demonstrate that the Rényi divergence can operate with high levels of background and provides results which are more accurate than Ripley’s functions, Voronoi tesselation or DBSCAN. AVAILABILITY AND IMPLEMENTATION: The data supporting this research and the software described are accessible at the following site: https://dx.doi.org/10.18742/RDM01-316. Correspondence and requests for materials should be addressed to the corresponding author. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-6247934
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-62479342018-11-28 The Rényi divergence enables accurate and precise cluster analysis for localization microscopy Staszowska, Adela D Fox-Roberts, Patrick Hirvonen, Liisa M Peddie, Christopher J Collinson, Lucy M Jones, Gareth E Cox, Susan Bioinformatics Original Papers MOTIVATION: Clustering analysis is a key technique for quantitatively characterizing structures in localization microscopy images. To build up accurate information about biological structures, it is critical that the quantification is both accurate (close to the ground truth) and precise (has small scatter and is reproducible). RESULTS: Here, we describe how the Rényi divergence can be used for cluster radius measurements in localization microscopy data. We demonstrate that the Rényi divergence can operate with high levels of background and provides results which are more accurate than Ripley’s functions, Voronoi tesselation or DBSCAN. AVAILABILITY AND IMPLEMENTATION: The data supporting this research and the software described are accessible at the following site: https://dx.doi.org/10.18742/RDM01-316. Correspondence and requests for materials should be addressed to the corresponding author. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2018-12-01 2018-06-01 /pmc/articles/PMC6247934/ /pubmed/29868717 http://dx.doi.org/10.1093/bioinformatics/bty403 Text en © The Author(s) 2018. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Staszowska, Adela D
Fox-Roberts, Patrick
Hirvonen, Liisa M
Peddie, Christopher J
Collinson, Lucy M
Jones, Gareth E
Cox, Susan
The Rényi divergence enables accurate and precise cluster analysis for localization microscopy
title The Rényi divergence enables accurate and precise cluster analysis for localization microscopy
title_full The Rényi divergence enables accurate and precise cluster analysis for localization microscopy
title_fullStr The Rényi divergence enables accurate and precise cluster analysis for localization microscopy
title_full_unstemmed The Rényi divergence enables accurate and precise cluster analysis for localization microscopy
title_short The Rényi divergence enables accurate and precise cluster analysis for localization microscopy
title_sort rényi divergence enables accurate and precise cluster analysis for localization microscopy
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247934/
https://www.ncbi.nlm.nih.gov/pubmed/29868717
http://dx.doi.org/10.1093/bioinformatics/bty403
work_keys_str_mv AT staszowskaadelad therenyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT foxrobertspatrick therenyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT hirvonenliisam therenyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT peddiechristopherj therenyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT collinsonlucym therenyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT jonesgarethe therenyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT coxsusan therenyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT staszowskaadelad renyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT foxrobertspatrick renyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT hirvonenliisam renyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT peddiechristopherj renyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT collinsonlucym renyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT jonesgarethe renyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy
AT coxsusan renyidivergenceenablesaccurateandpreciseclusteranalysisforlocalizationmicroscopy