Cargando…

Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6

Although phosphate-solubilizing bacteria (PSBs) are used in agricultural production, comprehensive research on PSB that colonize the rhizosphere of different plants and promote plant growth is lacking. This study was conducted to examine the growth-promoting effects and colonizing capacity of strain...

Descripción completa

Detalles Bibliográficos
Autores principales: Ku, Yongli, Xu, Guoyi, Tian, Xiaohong, Xie, Huiqin, Yang, Xiangna, Cao, Cuiling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6248894/
https://www.ncbi.nlm.nih.gov/pubmed/30462642
http://dx.doi.org/10.1371/journal.pone.0200181
Descripción
Sumario:Although phosphate-solubilizing bacteria (PSBs) are used in agricultural production, comprehensive research on PSB that colonize the rhizosphere of different plants and promote plant growth is lacking. This study was conducted to examine the growth-promoting effects and colonizing capacity of strain YL6, a PSB. YL6 not only increased the biomass of soybean and wheat in pot experiments but also increased the yield and growth of Chinese cabbage under field conditions. The observed growth promotion was related to the capacity of YL6 to dissolve inorganic and organic phosphorus and to produce indole-3-acetic (IAA) and gibberellin (GA). After applying YL6 to soybean, wheat and Chinese cabbage, the rhizosphere soil available phosphorus (available P) content increased by 120.16%, 62.47% and 7.21%, respectively, and the plant total phosphorus content increased by 198.60%, 6.20% and 78.89%, respectively, compared with plants not treated with YL6. To examine plant colonization, YL6 labeled with green fluorescent protein (YL6-GFP) was inoculated into the plant rhizosphere and found to first colonize the root surface and hairs and then to penetrate into the intercellular spaces and vessels. Collectively, these results demonstrate that YL6 promotes the growth of three different crops and colonizes them in a similar manner. The findings therefore provide a solid foundation for probing the mechanisms by which PSB affect plant growth.