Cargando…
A differential privacy protecting K-means clustering algorithm based on contour coefficients
This paper, based on differential privacy protecting K-means clustering algorithm, realizes privacy protection by adding data-disturbing Laplace noise to cluster center point. In order to solve the problem of Laplace noise randomness which causes the center point to deviate, especially when poor ava...
Autores principales: | Zhang, Yaling, Liu, Na, Wang, Shangping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6248925/ https://www.ncbi.nlm.nih.gov/pubmed/30462662 http://dx.doi.org/10.1371/journal.pone.0206832 |
Ejemplares similares
-
Differential privacy fuzzy C-means clustering algorithm based on gaussian kernel function
por: Zhang, Yaling, et al.
Publicado: (2021) -
Improving the proof of “Privacy-preserving attribute-keyword based data publish-subscribe service on cloud platforms”
por: Wang, Shangping, et al.
Publicado: (2019) -
The algorithmic foundations of differential privacy
por: Dwork, Cynthia, et al.
Publicado: (2014) -
Efficient Privacy-Preserving K-Means Clustering from Secret-Sharing-Based Secure Three-Party Computation
por: Wei, Weiming, et al.
Publicado: (2022) -
Clustering Using Boosted Constrained k-Means Algorithm
por: Okabe, Masayuki, et al.
Publicado: (2018)