Cargando…
A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients
The primary goal of precision medicine is to minimize side effects and optimize efficacy of treatments. Recent advances in medical imaging technology allow the use of more advanced image analysis methods beyond simple measurements of tumor size or radiotracer uptake metrics. The extraction of quanti...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6248970/ https://www.ncbi.nlm.nih.gov/pubmed/30462705 http://dx.doi.org/10.1371/journal.pone.0207455 |
_version_ | 1783372662820569088 |
---|---|
author | Ramella, Sara Fiore, Michele Greco, Carlo Cordelli, Ermanno Sicilia, Rosa Merone, Mario Molfese, Elisabetta Miele, Marianna Cornacchione, Patrizia Ippolito, Edy Iannello, Giulio D’Angelillo, Rolando Maria Soda, Paolo |
author_facet | Ramella, Sara Fiore, Michele Greco, Carlo Cordelli, Ermanno Sicilia, Rosa Merone, Mario Molfese, Elisabetta Miele, Marianna Cornacchione, Patrizia Ippolito, Edy Iannello, Giulio D’Angelillo, Rolando Maria Soda, Paolo |
author_sort | Ramella, Sara |
collection | PubMed |
description | The primary goal of precision medicine is to minimize side effects and optimize efficacy of treatments. Recent advances in medical imaging technology allow the use of more advanced image analysis methods beyond simple measurements of tumor size or radiotracer uptake metrics. The extraction of quantitative features from medical images to characterize tumor pathology or heterogeneity is an interesting process to investigate, in order to provide information that may be useful to guide the therapies and predict survival. This paper discusses the rationale supporting the concept of radiomics and the feasibility of its application to Non-Small Cell Lung Cancer in the field of radiation oncology research. We studied 91 stage III patients treated with concurrent chemoradiation and adaptive approach in case of tumor reduction during treatment. We considered 12 statistics features and 230 textural features extracted from the CT images. In our study, we used an ensemble learning method to classify patients’ data into either the adaptive or non-adaptive group during chemoradiation on the basis of the starting CT simulation. Our data supports the hypothesis that a specific signature can be identified (AUC 0.82). In our experience, a radiomic signature mixing semantic and image-based features has shown promising results for personalized adaptive radiotherapy in non-small cell lung cancer. |
format | Online Article Text |
id | pubmed-6248970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62489702018-12-06 A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients Ramella, Sara Fiore, Michele Greco, Carlo Cordelli, Ermanno Sicilia, Rosa Merone, Mario Molfese, Elisabetta Miele, Marianna Cornacchione, Patrizia Ippolito, Edy Iannello, Giulio D’Angelillo, Rolando Maria Soda, Paolo PLoS One Research Article The primary goal of precision medicine is to minimize side effects and optimize efficacy of treatments. Recent advances in medical imaging technology allow the use of more advanced image analysis methods beyond simple measurements of tumor size or radiotracer uptake metrics. The extraction of quantitative features from medical images to characterize tumor pathology or heterogeneity is an interesting process to investigate, in order to provide information that may be useful to guide the therapies and predict survival. This paper discusses the rationale supporting the concept of radiomics and the feasibility of its application to Non-Small Cell Lung Cancer in the field of radiation oncology research. We studied 91 stage III patients treated with concurrent chemoradiation and adaptive approach in case of tumor reduction during treatment. We considered 12 statistics features and 230 textural features extracted from the CT images. In our study, we used an ensemble learning method to classify patients’ data into either the adaptive or non-adaptive group during chemoradiation on the basis of the starting CT simulation. Our data supports the hypothesis that a specific signature can be identified (AUC 0.82). In our experience, a radiomic signature mixing semantic and image-based features has shown promising results for personalized adaptive radiotherapy in non-small cell lung cancer. Public Library of Science 2018-11-21 /pmc/articles/PMC6248970/ /pubmed/30462705 http://dx.doi.org/10.1371/journal.pone.0207455 Text en © 2018 Ramella et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ramella, Sara Fiore, Michele Greco, Carlo Cordelli, Ermanno Sicilia, Rosa Merone, Mario Molfese, Elisabetta Miele, Marianna Cornacchione, Patrizia Ippolito, Edy Iannello, Giulio D’Angelillo, Rolando Maria Soda, Paolo A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients |
title | A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients |
title_full | A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients |
title_fullStr | A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients |
title_full_unstemmed | A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients |
title_short | A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients |
title_sort | radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6248970/ https://www.ncbi.nlm.nih.gov/pubmed/30462705 http://dx.doi.org/10.1371/journal.pone.0207455 |
work_keys_str_mv | AT ramellasara aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT fioremichele aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT grecocarlo aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT cordelliermanno aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT siciliarosa aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT meronemario aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT molfeseelisabetta aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT mielemarianna aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT cornacchionepatrizia aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT ippolitoedy aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT iannellogiulio aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT dangelillorolandomaria aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT sodapaolo aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT ramellasara radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT fioremichele radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT grecocarlo radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT cordelliermanno radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT siciliarosa radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT meronemario radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT molfeseelisabetta radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT mielemarianna radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT cornacchionepatrizia radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT ippolitoedy radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT iannellogiulio radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT dangelillorolandomaria radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients AT sodapaolo radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients |