Cargando…

A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients

The primary goal of precision medicine is to minimize side effects and optimize efficacy of treatments. Recent advances in medical imaging technology allow the use of more advanced image analysis methods beyond simple measurements of tumor size or radiotracer uptake metrics. The extraction of quanti...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramella, Sara, Fiore, Michele, Greco, Carlo, Cordelli, Ermanno, Sicilia, Rosa, Merone, Mario, Molfese, Elisabetta, Miele, Marianna, Cornacchione, Patrizia, Ippolito, Edy, Iannello, Giulio, D’Angelillo, Rolando Maria, Soda, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6248970/
https://www.ncbi.nlm.nih.gov/pubmed/30462705
http://dx.doi.org/10.1371/journal.pone.0207455
_version_ 1783372662820569088
author Ramella, Sara
Fiore, Michele
Greco, Carlo
Cordelli, Ermanno
Sicilia, Rosa
Merone, Mario
Molfese, Elisabetta
Miele, Marianna
Cornacchione, Patrizia
Ippolito, Edy
Iannello, Giulio
D’Angelillo, Rolando Maria
Soda, Paolo
author_facet Ramella, Sara
Fiore, Michele
Greco, Carlo
Cordelli, Ermanno
Sicilia, Rosa
Merone, Mario
Molfese, Elisabetta
Miele, Marianna
Cornacchione, Patrizia
Ippolito, Edy
Iannello, Giulio
D’Angelillo, Rolando Maria
Soda, Paolo
author_sort Ramella, Sara
collection PubMed
description The primary goal of precision medicine is to minimize side effects and optimize efficacy of treatments. Recent advances in medical imaging technology allow the use of more advanced image analysis methods beyond simple measurements of tumor size or radiotracer uptake metrics. The extraction of quantitative features from medical images to characterize tumor pathology or heterogeneity is an interesting process to investigate, in order to provide information that may be useful to guide the therapies and predict survival. This paper discusses the rationale supporting the concept of radiomics and the feasibility of its application to Non-Small Cell Lung Cancer in the field of radiation oncology research. We studied 91 stage III patients treated with concurrent chemoradiation and adaptive approach in case of tumor reduction during treatment. We considered 12 statistics features and 230 textural features extracted from the CT images. In our study, we used an ensemble learning method to classify patients’ data into either the adaptive or non-adaptive group during chemoradiation on the basis of the starting CT simulation. Our data supports the hypothesis that a specific signature can be identified (AUC 0.82). In our experience, a radiomic signature mixing semantic and image-based features has shown promising results for personalized adaptive radiotherapy in non-small cell lung cancer.
format Online
Article
Text
id pubmed-6248970
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-62489702018-12-06 A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients Ramella, Sara Fiore, Michele Greco, Carlo Cordelli, Ermanno Sicilia, Rosa Merone, Mario Molfese, Elisabetta Miele, Marianna Cornacchione, Patrizia Ippolito, Edy Iannello, Giulio D’Angelillo, Rolando Maria Soda, Paolo PLoS One Research Article The primary goal of precision medicine is to minimize side effects and optimize efficacy of treatments. Recent advances in medical imaging technology allow the use of more advanced image analysis methods beyond simple measurements of tumor size or radiotracer uptake metrics. The extraction of quantitative features from medical images to characterize tumor pathology or heterogeneity is an interesting process to investigate, in order to provide information that may be useful to guide the therapies and predict survival. This paper discusses the rationale supporting the concept of radiomics and the feasibility of its application to Non-Small Cell Lung Cancer in the field of radiation oncology research. We studied 91 stage III patients treated with concurrent chemoradiation and adaptive approach in case of tumor reduction during treatment. We considered 12 statistics features and 230 textural features extracted from the CT images. In our study, we used an ensemble learning method to classify patients’ data into either the adaptive or non-adaptive group during chemoradiation on the basis of the starting CT simulation. Our data supports the hypothesis that a specific signature can be identified (AUC 0.82). In our experience, a radiomic signature mixing semantic and image-based features has shown promising results for personalized adaptive radiotherapy in non-small cell lung cancer. Public Library of Science 2018-11-21 /pmc/articles/PMC6248970/ /pubmed/30462705 http://dx.doi.org/10.1371/journal.pone.0207455 Text en © 2018 Ramella et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ramella, Sara
Fiore, Michele
Greco, Carlo
Cordelli, Ermanno
Sicilia, Rosa
Merone, Mario
Molfese, Elisabetta
Miele, Marianna
Cornacchione, Patrizia
Ippolito, Edy
Iannello, Giulio
D’Angelillo, Rolando Maria
Soda, Paolo
A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients
title A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients
title_full A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients
title_fullStr A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients
title_full_unstemmed A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients
title_short A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients
title_sort radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6248970/
https://www.ncbi.nlm.nih.gov/pubmed/30462705
http://dx.doi.org/10.1371/journal.pone.0207455
work_keys_str_mv AT ramellasara aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT fioremichele aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT grecocarlo aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT cordelliermanno aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT siciliarosa aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT meronemario aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT molfeseelisabetta aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT mielemarianna aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT cornacchionepatrizia aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT ippolitoedy aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT iannellogiulio aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT dangelillorolandomaria aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT sodapaolo aradiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT ramellasara radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT fioremichele radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT grecocarlo radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT cordelliermanno radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT siciliarosa radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT meronemario radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT molfeseelisabetta radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT mielemarianna radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT cornacchionepatrizia radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT ippolitoedy radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT iannellogiulio radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT dangelillorolandomaria radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients
AT sodapaolo radiomicapproachforadaptiveradiotherapyinnonsmallcelllungcancerpatients