Cargando…

Bone Mineral Density and Osteoporotic Vertebral Fractures in Traditional, Unassisted, Free-Diving Women (Haenyeos)

BACKGROUND: Water pressure and muscle contraction may influence bone mineral density (BMD) in a positive way. However, divers experience weightlessness, which has a negative effect on BMD. The present study investigated BMD difference in normal controls and woman free-divers with vertebral fracture...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Jun-Yeong, Ha, Kee-Yong, Kim, Young-Hoon, Kim, Seong-Chan, Yoon, Eun-Ji, Park, Hyung-Youl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Academy of Medical Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249170/
https://www.ncbi.nlm.nih.gov/pubmed/30473654
http://dx.doi.org/10.3346/jkms.2018.33.e316
Descripción
Sumario:BACKGROUND: Water pressure and muscle contraction may influence bone mineral density (BMD) in a positive way. However, divers experience weightlessness, which has a negative effect on BMD. The present study investigated BMD difference in normal controls and woman free-divers with vertebral fracture and with no fracture. METHODS: Between January 2010 and December 2014, traditional woman divers (known as Haenyeo in Korean), and non-diving women were investigated. The study population was divided into osteoporotic vertebral fracture and non-fracture groups. The BMD of the lumbar spine and femoral neck was measured. The radiological parameters for global spinal sagittal balance were measured. RESULTS: Thirty free-diving women and thirty-three non-diving women were enrolled in this study. The mean age of the divers was 72.1 ± 4.7 years and that of the controls was 72.7 ± 4.0 years (P = 0.61). There was no statistical difference in BMD between the divers and controls. In divers, cervical lordosis and pelvic tilt were significantly increased in the fracture subgroup compared to the non-fracture subgroup (P = 0.028 and P = 0.008, respectively). Sagittal vertical axis was statistically significantly correlated with cervical lordosis (Spearman's rho R = 0.41, P = 0.03), and pelvic tilt (Spearman's rho R = 0.46, P = 0.01) in divers. CONCLUSION: BMD did not differ significantly between divers and controls during their postmenopausal period. When osteoporotic spinal fractures develop, compensation mechanisms, such as increased cervical lordosis and pelvic tilt, was more evident in traditional woman divers. This may be due to the superior back muscle strength and spinal mobility of this group of women.