Cargando…

Characterization of fume particles generated during arc welding with various covered electrodes

Arc welding operations are considered to be risky procedures by generating hazardous welding fume for human health. This study focuses on the key characteristics, as well as dispersion models, of welding fumes within a work zone. Commercial and widely used types of electrodes with various types of c...

Descripción completa

Detalles Bibliográficos
Autores principales: Kirichenko, K. Yu., Agoshkov, A. I., Drozd, V. A., Gridasov, A. V., Kholodov, A. S., Kobylyakov, S. P., Kosyanov, D. Yu., Zakharenko, A. M., Karabtsov, A. A., Shimanskii, S. R., Stratidakis, A. K., Mezhuev, Ya. O., Tsatsakis, A. M., Golokhvast, K. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249245/
https://www.ncbi.nlm.nih.gov/pubmed/30464198
http://dx.doi.org/10.1038/s41598-018-35494-1
Descripción
Sumario:Arc welding operations are considered to be risky procedures by generating hazardous welding fume for human health. This study focuses on the key characteristics, as well as dispersion models, of welding fumes within a work zone. Commercial and widely used types of electrodes with various types of covering (rutile, basic, acidic and rutile-cellulose) were used in a series of experiments on arc welding operations, under 100 and 150 amps of electric current. According to the results of this study, maximum levels of pollution with particles of PM(10) fraction occur in the workspace during arc welding operations. Disregarding the types of electrodes used, the 3D models of dispersion of the РМ(10) particles at the floor plane exhibit corrugated morphologies while also demonstrate high concentrations of the РМ(10) particles at distances 0–3 m and 4–5 m from the emission source. The morphology of these particles is represented by solid and hollow spheres, ‘nucleus-shell’ structures, perforated spheres, sharp-edged plates, agglomerates of the tree-like (coral) shape. At last the bifractional mechanism of fume particle formation for this type of electrodes is also shown and described. In this article results are reported, which demonstrate the hazards of the arc welding process for human health. The results of the characterization of WFs reported improve our understanding of risks that these operations pose to human health and may strengthen the need for their control and mitigation.