Cargando…

A computational model of internal representations of chemical gradients in environments for chemotaxis of Caenorhabditis elegans

The small roundworm Caenorhabditis elegans employs two strategies, termed pirouette and weathervane, which are closely related to the internal representation of chemical gradients parallel and perpendicular to the travelling direction, respectively, to perform chemotaxis. These gradients must be cal...

Descripción completa

Detalles Bibliográficos
Autores principales: Soh, Zu, Sakamoto, Kazuma, Suzuki, Michiyo, Iino, Yuichi, Tsuji, Toshio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249258/
https://www.ncbi.nlm.nih.gov/pubmed/30464313
http://dx.doi.org/10.1038/s41598-018-35157-1
Descripción
Sumario:The small roundworm Caenorhabditis elegans employs two strategies, termed pirouette and weathervane, which are closely related to the internal representation of chemical gradients parallel and perpendicular to the travelling direction, respectively, to perform chemotaxis. These gradients must be calculated from the chemical information obtained at a single point, because the sensory neurons are located close to each other at the nose tip. To formulate the relationship between this sensory input and internal representations of the chemical gradient, this study proposes a simple computational model derived from the directional decomposition of the chemical concentration at the nose tip that can generate internal representations of the chemical gradient. The ability of the computational model was verified by using a chemotaxis simulator that can simulate the body motions of pirouette and weathervane, which confirmed that the computational model enables the conversion of the sensory input and head-bending angles into both types of gradients with high correlations of approximately r > 0.90 (p < 0.01) with the true gradients. In addition, the chemotaxis index of the model was 0.64, which is slightly higher than that in the actual animal (0.57). In addition, simulation using a connectome-based neural network model confirmed that the proposed computational model is implementable in the actual network structure.