Cargando…

Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration

Transcriptome deconvolution in cancer and other heterogeneous tissues remains challenging. Available methods lack the ability to estimate both component-specific proportions and expression profiles for individual samples. We present DeMixT, a new tool to deconvolve high-dimensional data from mixture...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zeya, Cao, Shaolong, Morris, Jeffrey S., Ahn, Jaeil, Liu, Rongjie, Tyekucheva, Svitlana, Gao, Fan, Li, Bo, Lu, Wei, Tang, Ximing, Wistuba, Ignacio I., Bowden, Michaela, Mucci, Lorelei, Loda, Massimo, Parmigiani, Giovanni, Holmes, Chris C., Wang, Wenyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249353/
https://www.ncbi.nlm.nih.gov/pubmed/30469014
http://dx.doi.org/10.1016/j.isci.2018.10.028
_version_ 1783372729690357760
author Wang, Zeya
Cao, Shaolong
Morris, Jeffrey S.
Ahn, Jaeil
Liu, Rongjie
Tyekucheva, Svitlana
Gao, Fan
Li, Bo
Lu, Wei
Tang, Ximing
Wistuba, Ignacio I.
Bowden, Michaela
Mucci, Lorelei
Loda, Massimo
Parmigiani, Giovanni
Holmes, Chris C.
Wang, Wenyi
author_facet Wang, Zeya
Cao, Shaolong
Morris, Jeffrey S.
Ahn, Jaeil
Liu, Rongjie
Tyekucheva, Svitlana
Gao, Fan
Li, Bo
Lu, Wei
Tang, Ximing
Wistuba, Ignacio I.
Bowden, Michaela
Mucci, Lorelei
Loda, Massimo
Parmigiani, Giovanni
Holmes, Chris C.
Wang, Wenyi
author_sort Wang, Zeya
collection PubMed
description Transcriptome deconvolution in cancer and other heterogeneous tissues remains challenging. Available methods lack the ability to estimate both component-specific proportions and expression profiles for individual samples. We present DeMixT, a new tool to deconvolve high-dimensional data from mixtures of more than two components. DeMixT implements an iterated conditional mode algorithm and a novel gene-set-based component merging approach to improve accuracy. In a series of experimental validation studies and application to TCGA data, DeMixT showed high accuracy. Improved deconvolution is an important step toward linking tumor transcriptomic data with clinical outcomes. An R package, scripts, and data are available: https://github.com/wwylab/DeMixTallmaterials.
format Online
Article
Text
id pubmed-6249353
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-62493532018-11-30 Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration Wang, Zeya Cao, Shaolong Morris, Jeffrey S. Ahn, Jaeil Liu, Rongjie Tyekucheva, Svitlana Gao, Fan Li, Bo Lu, Wei Tang, Ximing Wistuba, Ignacio I. Bowden, Michaela Mucci, Lorelei Loda, Massimo Parmigiani, Giovanni Holmes, Chris C. Wang, Wenyi iScience Article Transcriptome deconvolution in cancer and other heterogeneous tissues remains challenging. Available methods lack the ability to estimate both component-specific proportions and expression profiles for individual samples. We present DeMixT, a new tool to deconvolve high-dimensional data from mixtures of more than two components. DeMixT implements an iterated conditional mode algorithm and a novel gene-set-based component merging approach to improve accuracy. In a series of experimental validation studies and application to TCGA data, DeMixT showed high accuracy. Improved deconvolution is an important step toward linking tumor transcriptomic data with clinical outcomes. An R package, scripts, and data are available: https://github.com/wwylab/DeMixTallmaterials. Elsevier 2018-11-02 /pmc/articles/PMC6249353/ /pubmed/30469014 http://dx.doi.org/10.1016/j.isci.2018.10.028 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Wang, Zeya
Cao, Shaolong
Morris, Jeffrey S.
Ahn, Jaeil
Liu, Rongjie
Tyekucheva, Svitlana
Gao, Fan
Li, Bo
Lu, Wei
Tang, Ximing
Wistuba, Ignacio I.
Bowden, Michaela
Mucci, Lorelei
Loda, Massimo
Parmigiani, Giovanni
Holmes, Chris C.
Wang, Wenyi
Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
title Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
title_full Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
title_fullStr Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
title_full_unstemmed Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
title_short Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
title_sort transcriptome deconvolution of heterogeneous tumor samples with immune infiltration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249353/
https://www.ncbi.nlm.nih.gov/pubmed/30469014
http://dx.doi.org/10.1016/j.isci.2018.10.028
work_keys_str_mv AT wangzeya transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT caoshaolong transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT morrisjeffreys transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT ahnjaeil transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT liurongjie transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT tyekuchevasvitlana transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT gaofan transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT libo transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT luwei transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT tangximing transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT wistubaignacioi transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT bowdenmichaela transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT muccilorelei transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT lodamassimo transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT parmigianigiovanni transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT holmeschrisc transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration
AT wangwenyi transcriptomedeconvolutionofheterogeneoustumorsampleswithimmuneinfiltration