Cargando…
Bioactive metabolites from the leaves of Withania adpressa
Context:Withania (Solanaceae) species are known to be a rich source of withanolides, which have shown several biological properties. Objective: To identify the compounds responsible for Withania adpressa Coss. antioxidant activity and further test them for their NF-κB inhibition and antiproliferativ...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249549/ https://www.ncbi.nlm.nih.gov/pubmed/30451050 http://dx.doi.org/10.1080/13880209.2018.1499781 |
Sumario: | Context:Withania (Solanaceae) species are known to be a rich source of withanolides, which have shown several biological properties. Objective: To identify the compounds responsible for Withania adpressa Coss. antioxidant activity and further test them for their NF-κB inhibition and antiproliferative activity in multiple myeloma cells. Materials and methods: Compounds were obtained from the EtOAc extract of W. adpressa leaves. Structure elucidation was carried out mainly by 1D- and 2D-NMR, and mass spectrometry. Isolated compounds were tested in a dose-response for their in vitro NF-κB inhibition and antiproliferative activity in multiple myeloma cells after 5 and 72 h treatment, respectively. Results: The fractionation resulted in the isolation of a new glycowithanolide named wadpressine (5) together with withanolide F, withaferin A, coagulin L, and nicotiflorin. The latter showed a moderate ability to scavenge free radicals in DPPH (IC(50) = 35.3 µM) and NO (IC(50) = 41.3 µM) assays. Withanolide F and withaferin A exhibited low µM antiproliferative activity against both multiple myeloma cancer stem cells and RPMI 8226 cells. Furthermore, they inhibited NF-κB activity with IC(50) values of 1.2 and 0.047 µM, respectively. The other compounds showed a moderate inhibition of cell proliferation in RPMI 8226 cells, but were inactive against cancer stem cells and did not inhibit NF-κB activity. Discussion and conclusions: One new glycowithanolide and four known compounds were isolated. Biological evaluation data gave further insight on the antitumor potential of withanolides for refractory cancers. |
---|