Cargando…
Recognition of bacteria named entity using conditional random fields in Spark
BACKGROUND: Microbe plays a crucial role in the functional mechanism of an ecosystem. Identification of the interactions among microbes is an important step towards understand the structure and function of microbial communities, as well as of the impact of microbes on human health and disease. Despi...
Autores principales: | Wang, Xiaoyan, Li, Yichuan, He, Tingting, Jiang, Xingpeng, Hu, Xiaohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249713/ https://www.ncbi.nlm.nih.gov/pubmed/30463540 http://dx.doi.org/10.1186/s12918-018-0625-3 |
Ejemplares similares
-
A hybrid deep learning framework for bacterial named entity recognition with domain features
por: Li, Xusheng, et al.
Publicado: (2019) -
Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks
por: Wei, Qikang, et al.
Publicado: (2016) -
Precursor-induced conditional random fields: connecting separate entities by induction for improved clinical named entity recognition
por: Lee, Wangjin, et al.
Publicado: (2019) -
SBLC: a hybrid model for disease named entity recognition based on semantic bidirectional LSTMs and conditional random fields
por: Xu, Kai, et al.
Publicado: (2018) -
Improving biomedical named entity recognition with syntactic information
por: Tian, Yuanhe, et al.
Publicado: (2020)