Cargando…
An interpretable boosting model to predict side effects of analgesics for osteoarthritis
BACKGROUND: Osteoarthritis (OA) is the most common disease of arthritis. Analgesics are widely used in the treat of arthritis, which may increase the risk of cardiovascular diseases by 20% to 50% overall.There are few studies on the side effects of OA medication, especially the risk prediction model...
Autores principales: | Liu, Liangliang, Yu, Ying, Fei, Zhihui, Li, Min, Wu, Fang-Xiang, Li, Hong-Dong, Pan, Yi, Wang, Jianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249730/ https://www.ncbi.nlm.nih.gov/pubmed/30463545 http://dx.doi.org/10.1186/s12918-018-0624-4 |
Ejemplares similares
-
Analgesic effects of multisensory illusions in osteoarthritis
por: Preston, Catherine, et al.
Publicado: (2011) -
PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences
por: Yan, Cheng, et al.
Publicado: (2020) -
Analgesic efficacy of tramadol in cats with naturally occurring osteoarthritis
por: Monteiro, Beatriz P., et al.
Publicado: (2017) -
Buprenorphine in rats: potent analgesic or trigger for fatal side effects?
por: Reifenrath, Janin, et al.
Publicado: (2022) -
Boosting for insight and/or boosting for agency? How to maximize accurate test interpretation with natural frequencies
por: Feufel, Markus A., et al.
Publicado: (2023)