Cargando…

A high-density genetic linkage map and QTL mapping for growth and sex of yellow drum (Nibea albiflora)

A high-density genetic linkage map is essential for the studies of comparative genomics and gene mapping, and can facilitate assembly of reference genome. Herein, we constructed a high-density genetic linkage map with 8,094 SNPs selected from 113 sequenced fish of a F1 family. Ultimately, the consen...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Changliang, Han, Zhaofang, Li, Wanbo, Ye, Kun, Xie, Yangjie, Wang, Zhiyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250659/
https://www.ncbi.nlm.nih.gov/pubmed/30467365
http://dx.doi.org/10.1038/s41598-018-35583-1
Descripción
Sumario:A high-density genetic linkage map is essential for the studies of comparative genomics and gene mapping, and can facilitate assembly of reference genome. Herein, we constructed a high-density genetic linkage map with 8,094 SNPs selected from 113 sequenced fish of a F1 family. Ultimately, the consensus map spanned 3818.24 cM and covered nearly the whole genome (99.4%) with a resolution of 0.47 cM. 1,457 scaffolds spanning 435.15 Mb were anchored onto 24 linkage groups, accounting for 80.7% of the draft genome assembly of the yellow drum. Comparative genomic analyses with medaka and zebrafish genomes showed superb chromosome-scale synteny between yellow drum and medaka. QTL mapping and association analysis congruously revealed 22 QTLs for growth-related traits and 13 QTLs for sex dimorphism. Some important candidate genes such as PLA2G4A, BRINP3 and P2RY1 were identified from these growth-related QTL regions. A gene family including DMRT1, DMRT2 and DMRT3 was identified from these sex-related QTL regions on the linkage group LG9. We demonstrate that this linkage map can facilitate the ongoing marker-assisted selection and genomic and genetic studies for yellow drum.