Cargando…
Machine learning analysis of extreme events in optical fibre modulation instability
A central research area in nonlinear science is the study of instabilities that drive extreme events. Unfortunately, techniques for measuring such phenomena often provide only partial characterisation. For example, real-time studies of instabilities in nonlinear optics frequently use only spectral d...
Autores principales: | Närhi, Mikko, Salmela, Lauri, Toivonen, Juha, Billet, Cyril, Dudley, John M., Genty, Goëry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250684/ https://www.ncbi.nlm.nih.gov/pubmed/30467348 http://dx.doi.org/10.1038/s41467-018-07355-y |
Ejemplares similares
-
Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability
por: Närhi, Mikko, et al.
Publicado: (2016) -
Real-time characterization of spectral instabilities in a mode-locked fibre laser exhibiting soliton-similariton dynamics
por: Lapre, Coraline, et al.
Publicado: (2019) -
Emergent rogue wave structures and statistics in spontaneous modulation instability
por: Toenger, Shanti, et al.
Publicado: (2015) -
Machine learning analysis of rogue solitons in supercontinuum generation
por: Salmela, Lauri, et al.
Publicado: (2020) -
Data-driven model discovery of ideal four-wave mixing in nonlinear fibre optics
por: Ermolaev, Andrei V., et al.
Publicado: (2022)