Cargando…
Fast Object Tracking on a Many-Core Neural Network Chip
Fast object tracking on embedded devices is of great importance for applications such as autonomous driving, unmanned aerial vehicle, and intelligent monitoring. Whereas, most of previous general solutions failed to reach this goal due to the facts that (i) high computational complexity and heteroge...
Autores principales: | Deng, Lei, Zou, Zhe, Ma, Xin, Liang, Ling, Wang, Guanrui, Hu, Xing, Liu, Liu, Pei, Jing, Li, Guoqi, Xie, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250745/ https://www.ncbi.nlm.nih.gov/pubmed/30505264 http://dx.doi.org/10.3389/fnins.2018.00841 |
Ejemplares similares
-
End-to-End Implementation of Various Hybrid Neural Networks on a Cross-Paradigm Neuromorphic Chip
por: Wang, Guanrui, et al.
Publicado: (2021) -
BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs
por: Eklund, Anders, et al.
Publicado: (2014) -
SCTN: Event-based object tracking with energy-efficient deep convolutional spiking neural networks
por: Ji, Mingcheng, et al.
Publicado: (2023) -
DVS Benchmark Datasets for Object Tracking, Action Recognition, and Object Recognition
por: Hu, Yuhuang, et al.
Publicado: (2016) -
Corrigendum: SCTN: event-based object tracking with energy-efficient deep convolutional spiking neural networks
por: Ji, Mingcheng, et al.
Publicado: (2023)